Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T05:16:43.718Z Has data issue: false hasContentIssue false

Effects of ballooning instability on tokamak confinement

Published online by Cambridge University Press:  13 March 2009

Guoyong Fu
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712, U.S.A.
J. W. Van Dam
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712, U.S.A.

Abstract

Using the ballooning-mode transport model proposed by Connor, Taylor & Turner (1984), we derive the thermal conductivity induced by ideal ballooning instability and compare it to experimental observations from auxiliary-heated tokamaks. We show how this model can be improved by means of a finite-beta equilibrium and also apply it to obtain a confinement scaling law for high-beta, purely Ohmically heated tokamaks. Finally, we employ this transport mode to find that tokamaks with supplemental stabilization, for example due to gyroradius, energetic particle or shaping effects, can self-consistently access the second stability regime at rather high heating power.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bishop, C. M. & Hastie, R. J. 1985 Annual Controlled Fusion Theory Meeting, Madison, Wisconsin, 15–17, April, Paper 1R2.Google Scholar
Carreras, B. A., Diamond, P. H., Murakami, M., Dunlap, J. L., Bell, J. D., Hicks, H. R., Holmes, J. A., Lazarus, E. A., Paré, V. K., Similon, P., Thomas, C. E. & Wieland, R. M. 1983 Phys. Rev. Lett. 50, 503.CrossRefGoogle Scholar
Chance, M. S., Jardin, S. C. & Stix, T. H. 1983 Phys. Rev. Lett. 51, 1963.CrossRefGoogle Scholar
Choe, W. H. & Freidberg, J. P. 1986 Phys. Fluids, 29, 1766.Google Scholar
Connor, J. W., Taylor, J. B. & Turner, M. F. 1984 Nucl. Fusion, 24, 642.CrossRefGoogle Scholar
Coppi, B., Ferreira, A., Mark, J. W.-K. & Ramos, J. J. 1979 Nucl. Fusion, 19, 715.Google Scholar
Coppi, B., Ferreira, A. & Ramos, J. J. 1980 Phys. Rev. Lett. 44, 990.CrossRefGoogle Scholar
Fielding, P. J. & Haas, F. A. 1978 Phys. Rev. Lett. 41, 801.Google Scholar
Freidberg, J. P. & Sigmar, D. J. 1984 Bull. Am. Phys. Soc. 29, 370.Google Scholar
Freidberg, J. P., Hakkarainen, S. P. & Sigmar, D. J. 1985 Annual Controlled Fusion Theory Meeting, Madison, Wisconsin, 15–17 April, Paper 2B4.Google Scholar
Goldston, R. J. 1984 Plasma Phys. Contr. Fusion, 26, 87.Google Scholar
Greene, J. M. & Chance, M. S. 1981 Nucl. Fusion, 21, 453.Google Scholar
Hastie, R. J. & Hesketh, K. W. 1981 Nucl. Fusion, 21, 651.Google Scholar
Miller, R. L. & Moore, R. W. 1979 Phys. Rev. Lett. 43, 765.CrossRefGoogle Scholar
Rosenbluth, M. N., Tsai, S. T., Van Dam, J. W. & Engquist, M. G. 1983 Phys. Rev. Lett. 51, 1967.Google Scholar
Spitzer, L. Jr 1962 Physics of Fully Ionized Gases, 2nd edn, p. 139. Interscience.Google Scholar
Tang, W. M., Dewar, R. L. & Manickam, J. 1982 Nucl. Fusion, 22, 1081.CrossRefGoogle Scholar
Tuda, T., Azumi, M., Kurita, G., Takizuka, T. & Takeda, T. 1981 Report JAERI-M 9472, Japan Atomic Energy Research Institute.Google Scholar