Published online by Cambridge University Press: 01 August 2009
Typically a magnetohydrodynamical model for neutral plasmas must take into account both the ionic and the electron fluids and their interaction. However, at short time scales, the ionic fluid appears to be stationary compared to the electron fluid. On these scales, we need consider only the electron motion and associated field dynamics, and a single fluid model called the electron magnetohydrodynamical model which treats the ionic fluid as a uniform neutralizing background applies. Using Maxwell's equations, the vorticity of the electron fluid and the magnetic field can be combined to give a generalized vorticity field, and one can show that Euler's equations govern its behavior. When the vorticity is concentrated into slender, periodic, and nearly parallel (but slightly three-dimensional) filaments, one can also show that Euler's equations simplify into a Hamiltonian system and treat the system in statistical equilibrium, where the filaments act as interacting particles. In this paper, we show that, under a mean-field approximation, as the number of filaments becomes infinite (with appropriate scaling to keep the vorticity constant) and given that angular momentum is conserved, the statistical length scale, R, of this system in the Gibbs canonical ensemble follows an explicit formula, which we derive. This formula shows how the most critical statistic of an electron plasma of this type, its size, varies with angular momentum, kinetic energy, and filament elasticity (a measure of the interior structure of each filament) and in particular it shows how three-dimensional effects cause significant increases in the system size from a perfectly parallel, two-dimensional, one-component Coulomb gas.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.