Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T22:24:34.085Z Has data issue: false hasContentIssue false

Nonlinear interactions between upper-hybrid and Alfvén modes in a magnetized plasma containing charged dust impurities

Published online by Cambridge University Press:  01 February 2007

P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany Centre for Nonlinear Physics, Department of Physics, Umeå University, SE-90187 Umeå, Sweden Department of Physics, University of Strathclyde, Glasgow, G4 ONG, UK Centro de Física dos Plasmas, Departamento de Fisica, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisbon, Portugal Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0X11 OQX, UK (ps@tp4.rub.de)
L. STENFLO
Affiliation:
Centre for Nonlinear Physics, Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the nonlinear interactions between upper-hybrid (UH) and Alfvén modes in a magnetized electron–ion plasma containing a fraction of stationary charged dust grains. The interaction is governed by a pair of equations for the UH wave envelope including the relativistic electron mass increase and the density and compressional magnetic field fluctuations associated with the Alfvén modes that are, in turn, driven by the ponderomotive force of the UH waves. The coupled mode equations are then Fourier analyzed to obtain a new dispersion relation, which admits new classes of modulational instabilities. The existence of a cusp-shaped UH envelope soliton is also predicted. The result can have relevance to the electron acceleration by sharply localized UH waves in the dusty magnetosphere of Saturn.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2006

References

[1]Kaufman, A. N. and Stenflo, L. 1975 Phys. Scripta 11, 269.Google Scholar
[2]Porkolab, M. and Goldman, M. V. 1976 Phys. Fluids 19, 872.CrossRefGoogle Scholar
[3]Yu, M. Y. and Shukla, P. K. 1977 Phys. Plasma 19, 889.CrossRefGoogle Scholar
[4]Litvak, A. G. and Sergeev, A. M. 1978 JETP Lett. 27, 517.Google Scholar
[5]Berezhiani, V. I. 1981 Sov. J. Plasma Phys. 7, 365.Google Scholar
[6]Murtaza, G. and Shukla, P. K. 1984 J. Plasma Phys. 31, 423.Google Scholar
[7]Sharma, R. P. and Shukla, P. K. 1983 Phys. Plasmas 26, 87.Google Scholar
[8]Pécseli, H. 1985 IEEE Trans. Plasma Sci. PS-13, 53.Google Scholar
[9]Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar
[10]Yu, M. Y. and Shukla, P. K. 1978 J. Math. Phys. 19, 2506; 1983 J. Plasma Phys. 29, 409.Google Scholar
[11]Christiansen, P. J., Jain, V. K. and Stenflo, L. 1981 Phys. Rev. Lett 46, 1333.Google Scholar
[12]Cho, T. and Tanaka, S. 2001 Phys. Rev. Lett. 45, 1403.Google Scholar
[13]Katsouleas, T. and Dawson, J. M. 1983 Phys. Rev. Lett. 51, 392.Google Scholar
Chernikov, A. A., Schmidt, G. and Neishtadt, A. 1992 Phys. Rev. Lett. 68, 1507.CrossRefGoogle Scholar
[14]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IoP.CrossRefGoogle Scholar
[15]Shukla, P. K. 1994 Phys. Plasmas 1, 1362.Google Scholar
[16]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Shukla, P. K. 1992 Phys. Scripta 45, 504.Google Scholar
Shukla, P. K. and Silin, V. 1992 Phys. Scripta 45, 508.CrossRefGoogle Scholar
Shukla, P. K. 2001 Phys. Plasmas 8, 1791.CrossRefGoogle Scholar
[17]Varma, R. K., Shukla, P. K. and Krishan, V. 1993 Phys. Rev. E 47, 3612.Google Scholar
[18]Rao, N. N. 1995 J. Plasma Phys. 53, 317.Google Scholar
[19]Birk, G. T., Kopp, A. and Shukla, P. K. 1996 Phys. Plasmas 3, 3564.Google Scholar
[20]Amin, M. R., Morfill, G. E. and Shukla, P. K. 1998 Phys. Rev. E 59, 6517.CrossRefGoogle Scholar
Shukla, P. K. 2000 Phys. Plasmas 7, 1044.Google Scholar
[21]Yu, M. Y. and Shukla, P. K. 1983 J. Plasma Phys. 29, 409.Google Scholar
Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
Popel, S. I.Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Plasmas 2, 716.Google Scholar
[22]Shukla, P. K. and Stenflo, L. 2003 Phys. Plasmas 10, 4572.Google Scholar
[23]Pokhotelov, O. A., Onishchenko, O. G., Shukla, P. K. and Stenflo, L. 1999 J. Geophys. Res. 104, 19 797.Google Scholar
[24]Mamun, A. A. and Shukla, P. K. 2002 Phys. Plasmas 9, 1468; 2001 Phys. Lett. A 290, 173.Google Scholar
[25]Tsintsadze, N. L., Tskhakaya, D. D. and Stenflo, L. 1979 Phys. Lett. A 72, 115.Google Scholar
[26]Williams, J. D., Chen, L. J., Kurth, W. S., Gurnett, D. A. and Dougherty, M. K. 2006 Geophys. Res. Lett. 33, L06103/14; doi: 10.1029/2005GL024532.Google Scholar