Published online by Cambridge University Press: 09 May 2013
Recently, a theoretical investigation of the collective and nonlocal quantum effects has been carried out within the framework of a quantum approach to the relativistic charged particle beam travelling in a cold, collisionless, strongly magnetized plasma. This has been done taking into account both the plasma wake field excitation and the quantum paraxial approximation. On the basis of this theory, here we carry out a preliminary study of the transverse effects experienced by a cold relativistic beam through a thin plasma slab (plasma lens). In the strongly nonlocal regime, in which the beam experiences a very strong focusing effect, the scheme of plasma lens is reviewed in terms of the wave description provided by the above quantum theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.