Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T19:22:21.089Z Has data issue: false hasContentIssue false

Spectroscopic investigation of plasma evolution induced by double pulse laser in distilled water

Published online by Cambridge University Press:  07 August 2017

Remah ElRashedy
Affiliation:
National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza, Egypt Physics Department, Faculty of Science, Cairo University, Giza, Egypt
H. Imam
Affiliation:
National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza, Egypt
Khaled Elsayed*
Affiliation:
Basic Sciences Department, College of Engineering, Dammam University, Dammam, Saudi Kingdom
Mohy Mansour
Affiliation:
Mechanical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
*
Email address for correspondence: kelsayed@niles.edu.eg

Abstract

Considerable interest has been paid to laser-induced breakdown in liquid because of its wide application to medical issues of the eye and environmental monitoring. Therefore, the present work aims to study the phenomena of LIB in bulk distilled water generated in laser-induced breakdown spectroscopy (LIBS) experiment. The effect of experimental parameters such as inter-pulse delay between the two lasers, laser pulse energy and detection time window have been studied to examine the temporal growth of the laser-induced plasma in bulk water. Electron density and plasma temperature have been determined. The Stark broadening profile has been utilized for the electron density determination where the hydrogen lines $H_{\unicode[STIX]{x1D6FC}}$ and $H_{\unicode[STIX]{x1D6FD}}$ have been used. A deviation between electron density values from the broadening of both lines has been observed and discussed. The electron density values are varied between $10\text{E}+18$ and $10\text{E}+17~\text{cm}^{-3}$ corresponding to the timing experimental parameters. The plasma temperature is varied over a range 16 000 $\text{K}$ to 10 700 $\text{K}$ due to the plasma’s temporal behaviour with experimental parameters.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, S. M., Bonvallet, J., Lawrence-Snyder, M., Pearman, W. F. & Register, J. 2016 Underwater measurements using laser induced breakdown spectroscopy. J. Anal. Atomic Spectrometry 31 (1), 328336.CrossRefGoogle Scholar
Arca, G., Ciucci, A., Palleschi, V., Rastelli, S. & Tognoni, E. 1997 Trace element analysis in water by the laser-induced breakdown spectroscopy technique. Appl. Spectroscopy 51 (8), 11021105.CrossRefGoogle Scholar
Archontaki, H. A. & Crouch, S. R. 1988 Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy. Appl. Spectroscopy 42 (5), 741746.CrossRefGoogle Scholar
Aron-Rosa, D., Aron, J. J., Griesemann, M. & Thyzel, R. 1980 Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report. Am. Intra-Ocular Implant Soc. J. 6 (4), 352354.CrossRefGoogle ScholarPubMed
Barnes, P. A. & Rieckhoff, K. E. 1968 Laser induced underwater sparks. Appl. Phys. Lett. 13 (8), 282284.CrossRefGoogle Scholar
Berman, L. M. & Wolf, P. J. 1998 Laser-induced breakdown spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons. Appl. Spectroscopy 52 (3), 438443.CrossRefGoogle Scholar
Bunkin, N. F. & Lobeyev, A. V. 1997 Influence of dissolved gas on optical breakdown and small-angle scattering of light in liquids. Phys. Lett. A 229 (5), 327333.CrossRefGoogle Scholar
Casavola, A., De Giacomo, A., Dell’Aglio, M., Taccogna, F., Colonna, G., De Pascale, O. & Longo, S. 2005 Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water. Spectrochimica Acta B 60 (7), 975985.CrossRefGoogle Scholar
Casavola, A. R., Colonna, G., De Giacomo, A., De Pascale, O. & Capitelli, M. 2003 Experimental and theoretical investigation of laser-induced plasma of a titanium target. Appl. Opt. 42 (30), 59635970.CrossRefGoogle ScholarPubMed
Charfi, B. & Harith, M. A. 2002 Panoramic laser-induced breakdown spectrometry of water. Spectrochimica Acta Part B 57 (7), 11411153.CrossRefGoogle Scholar
Cheung, N. H. & Yeung, E. S. 1993 Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown. Appl. Spectroscopy 47 (7), 882886.CrossRefGoogle Scholar
Cremers, D. A., Radziemski, L. J. & Loree, T. R. 1984 Spectrochemical analysis of liquids using the laser spark. Appl. Spectroscopy 38 (5), 721729.CrossRefGoogle Scholar
De Giacomo, A., Dell’Aglio, M., Casavola, A., Colonna, G., De Pascale, O. & Capitelli, M. 2006 Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 385 (2), 303311.CrossRefGoogle ScholarPubMed
De Giacomo, A., Dell’Aglio, M., Colao, F. & Fantoni, R. 2004 Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach. Spectrochimica Acta B 59 (9), 14311438.CrossRefGoogle Scholar
De Giacomo, A., Dell’Aglio, M., Colao, F., Fantoni, R. & Lazic, V. 2005 Double-pulse LIBS in bulk water and on submerged bronze samples. Appl. Surf. Sci. 247 (1), 157162.CrossRefGoogle Scholar
De Giacomo, A., Dell’Aglio, M. & De Pascale, O. 2004 Single pulse-laser induced breakdown spectroscopy in aqueous solution. Appl. Phys. A 79 (4), 10351038.CrossRefGoogle Scholar
De Giacomo, A., Dell’Aglio, M., De Pascale, O. & Capitelli, M. 2007 From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples. Spectrochimica Acta B 62 (8), 721738.CrossRefGoogle Scholar
DeMichelis, C. 1969 Laser induced gas breakdown: a bibliographical review. IEEE J. Quant. Electron. 5 (4), 188202.CrossRefGoogle Scholar
Docchio, F., Regondi, P., Capon, M. R. & Mellerio, J. 1988 Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd : YAG laser pulses. 2: plasma luminescence and shielding. Appl. Opt. 27 (17), 36613668.CrossRefGoogle ScholarPubMed
Docchio, F., Sacchi, C. A. & Marshall, J. 1986 Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations. Laser Ophthalmol. 1, 8393.Google Scholar
El Sherbini, A. M., El Sherbini, T. M., Hegazy, H., Cristoforetti, G., Legnaioli, S., Palleschi, V., Pardini, L., Salvetti, A. & Tognoni, E. 2005 Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochimica Acta B 60 (12), 15731579.CrossRefGoogle Scholar
Evans, L. R. & Morgan, C. G. 1969 Lens aberration effects in optical-frequency breakdown of gases. Phys. Rev. Lett. 22 (21), 1099.CrossRefGoogle Scholar
Fabre, C., Boiron, M. C., Dubessy, J., Cathelineau, M. & Banks, D. A. 2002 Palaeofluid chemistry of a single fluid event: a bulk and in-situ multi-technique analysis (LIBS, Raman spectroscopy) of an Alpine fluid (Mont-Blanc). Chem. Geol. 182 (2), 249264.CrossRefGoogle Scholar
Felix, M. P. & Ellis, A. T. 1971 Laser-induced liquid breakdown-a step-by-step account. Appl. Phys. Lett. 19 (11), 484486.CrossRefGoogle Scholar
Fichet, P., Mauchien, P., Wagner, J. F. & Moulin, C. 2001 Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy. Anal. Chim. Acta 429 (2), 269278.CrossRefGoogle Scholar
Fichet, P., Toussaint, A. & Wagner, J. F. 1999 Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids. Appl. Phys. A 69 (7), S591S592.CrossRefGoogle Scholar
Griem, H. R. 1964 Plasma Spectroscopy McGraw-Hill Book Company. Academic Press,Google Scholar
Griem, H. R. 1974 Spectral Line Broadening by Plasmas. Academic Press.Google Scholar
Hammer, D. X., Jansen, E. D., Frenz, M., Noojin, G. D., Thomas, R. J., Noack, J., Vogel, A., Rockwell, B. A. & Welch, A. J. 1997 Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs. Appl. Opt. 36 (22), 56305640.CrossRefGoogle Scholar
Hammer, D. X., Thomas, R. J., Noojin, G. D., Rockwell, B. A., Kennedy, P. K. & Roach, W. P. 1996 Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media. IEEE J. Quant. Electron. 32 (4), 670678.CrossRefGoogle Scholar
Hosoda, M., Aoshima, S. I., Itoh, T. & Tsuchiya, Y. 1999 Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation. Japan. J. Appl. Phys. 38 (6R), 3567.CrossRefGoogle Scholar
Ito, Y., Ueki, O. & Nakamura, S. 1995 Determination of colloidal iron in water by laser-induced breakdown spectroscopy. Anal. Chim. Acta 299 (3), 401405.CrossRefGoogle Scholar
Kennedy, P. K., Boppart, S. A., Hammer, D. X., Rockwell, B. A., Noojin, G. D. & Roach, W. P. 1995 A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment. IEEE J. Quant. Electron. 31 (12), 22502257.CrossRefGoogle Scholar
Kennedy, P. K., Hammer, D. X. & Rockwell, B. A. 1997 Laser-induced breakdown in aqueous media. Prog. Q. Electron. 21 (3), 155248.CrossRefGoogle Scholar
Kitamori, T., Matsui, T., Sakagami, M. & Sawada, T. 1989 Laser breakdown spectrochemical analysis of microparticles in liquids. Chem. Lett. 18 (12), 22052208.CrossRefGoogle Scholar
Knopp, R., Scherbaum, F. J. & Kim, J. I. 1996 Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions. Fresenius’ J. Anal. Chem. 355 (1), 1620.CrossRefGoogle ScholarPubMed
Koch, S., Garen, W., Müller, M. & Neu, W. 2004 Detection of chromium in liquids by laser induced breakdown spectroscopy (LIBS). Appl. Phys. A 79 (4), 10711073.CrossRefGoogle Scholar
Lazic, V. & Jovićević, S. 2014 Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochimi. Acta B 101, 288311.Google Scholar
Lo, K. M. & Cheung, N. H. 2002 ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions. Appl. Spectroscopy 56 (6), 682688.CrossRefGoogle Scholar
Moskvin, A. L., Moskvin, L. N. & Ardashnikova, I. A. 2000 Systems for continuous water quality control in a flow. J. Anal. Chem. 55 (12), 11731178.CrossRefGoogle Scholar
Nakamura, S., Ito, Y., Sone, K., Hiraga, H. & Kaneko, K. I. 1996 Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses. Anal. Chem. 68 (17), 29812986.CrossRefGoogle ScholarPubMed
Ng, C. W., Ho, W. F. & Cheung, N. H. 1997 Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties. Appl. Spectroscopy 51 (7), 976983.CrossRefGoogle Scholar
NIST Atomic Spectra Data base. Available from (www.physics.gov).Google Scholar
Pichahchy, A. E., Cremers, D. A. & Ferris, M. J. 1997 Elemental analysis of metals under water using laser-induced breakdown spectroscopy. Spectrochimica Acta B 52 (1), 2539.CrossRefGoogle Scholar
Popov, A. M., Drozdova, A. N., Zaytsev, S. M., Biryukova, D. I., Zorov, N. B. & Labutin, T. A. 2016 Rapid, direct determination of strontium in natural waters by laser-induced breakdown spectroscopy. J. Anal. Atomic Spectrometry 31 (5), 11231130.CrossRefGoogle Scholar
Poulain, D. E. & Alexander, D. R. 1995 Influences on concentration measurements of liquid aerosols by laser-induced breakdown spectroscopy. Appl. Spectroscopy 49 (5), 569579.CrossRefGoogle Scholar
Rai, V. N., Yueh, F. Y. & Singh, J. P. 2008 Theoretical model for double pulse laser-induced breakdown spectroscopy. Appl. Opt. 47 (31), G30G37.CrossRefGoogle ScholarPubMed
Rockwell, B. A., Cain, C. P., Noojin, G. D., Roach, W. P., Rogers, M. E., Mayo, M. W. & Toth, C. A. 1993 Nonlinear refraction in vitreous humor. Opt. Lett. 18 (21), 17921794.CrossRefGoogle ScholarPubMed
Samek, O., Beddows, D. C., Kaiser, J., Kukhlevsky, S. V., Liska, M., Telle, H. H. & Young, J. 2000 Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples. Opt. Engng. 39 (8), 22482262.Google Scholar
Sturgeon, R. E. 1998 Future of atomic spectrometry for environmental analysis. J. Anal. Atomic Spectrometry 13 (5), 351361.CrossRefGoogle Scholar
Thomas, R. J., Hammer, D. X., Noojin, G. D., Stolarski, D. J., Rockwell, B. A. & Roach, W. P. 1996 Time-resolved spectroscopy of laser-induced breakdown in water. SPIE Proc. 2681, 402410.CrossRefGoogle Scholar
Tognoni, E., Palleschi, V., Corsi, M. & Cristoforetti, G. 2002 Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochimica Acta B 57 (7), 11151130.CrossRefGoogle Scholar
Vogel, A., Busch, S., Jungnickel, K. & Birngruber, R. 1994 Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surgery Medicine 15 (1), 3243.CrossRefGoogle ScholarPubMed
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84 (2), 719731.CrossRefGoogle Scholar
Wachter, J. R. & Cremers, D. A. 1987 Determination of uranium in solution using laser-induced breakdown spectroscopy. Appl. Spectroscopy 41 (6), 10421048.CrossRefGoogle Scholar
Wen-Feng, Hsieh1988 ‘High-intensity and high-energy laser interactions with single droplets’. PhD, Yale University.Google Scholar