Published online by Cambridge University Press: 11 December 2015
In this and the accompanying paper, the problem of the maximally achievable elongation ${\it\kappa}$ in a tokamak is investigated. The work represents an extension of many earlier studies, which were often focused on determining
${\it\kappa}$ limits due to (i) natural elongation in a simple applied pure vertical field or (ii) axisymmetric stability in the presence of a perfectly conducting wall. The extension investigated here includes the effect of the vertical stability feedback system which actually sets the maximum practical elongation limit in a real experiment. A basic resistive wall stability parameter,
${\it\gamma}{\it\tau}_{w}$, is introduced to model the feedback system which although simple in appearance actually captures the essence of the feedback system. Elongation limits in the presence of feedback are then determined by calculating the maximum
${\it\kappa}$ against
$n=0$ resistive wall modes for fixed
${\it\gamma}{\it\tau}_{w}$. The results are obtained by means of a general formulation culminating in a variational principle which is particularly amenable to numerical analysis. The principle is valid for arbitrary profiles but simplifies significantly for the Solov’ev profiles, effectively reducing the 2-D stability problem into a 1-D problem. The accompanying paper provides the numerical results and leads to a sharp answer of ‘how much elongation is too much’?
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.