Published online by Cambridge University Press: 12 March 2014
This paper studies definability within the theory of institutions, a version of abstract model theory that emerged in computing science studies of software specification and semantics. We generalise the concept of definability to arbitrary logics, formalised as institutions, and we develop three general definability results. One generalises the classical Beth theorem by relying on the interpolation properties of the institution. Another relies on a meta Birkhoff axiomatizability property of the institution and constitutes a source for many new actual definability results, including definability in (fragments of) classical model theory. The third one gives a set of sufficient conditions for ‘borrowing’ definability properties from another institution via an ‘adequate’ encoding between institutions.
The power of our general definability results is illustrated with several applications to (many-sorted) classical model theory and partial algebra, leading for example to definability results for (quasi-)varieties of models or partial algebras. Many other applications are expected for the multitude of logical systems formalised as institutions from computing science and logic.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.