Published online by Cambridge University Press: 12 March 2014
An Ehrenfeucht theory is a complete first order theory with exactly n countable models up to isomorphism, 1 < n < ω. Numerous results have emerged regarding these theories ([1]–[15]). A general question in model theory is whether or not the number of countable models of a complete theory can be different than the number of countable models of a complete consistent extension of the theory by finitely many constant symbols. Examples are known of Ehrenfeucht theories that have complete extensions by finitely many constant symbols such that the extensions fail to be Ehrenfeucht ([4], [8], [13]). These examples are easily modified to allow finite increases in the number of countable models.
This paper contains examples in the other direction—complete theories that have consistent extensions by finitely many constant symbols such that the extensions have fewer countable models. This answers affirmatively a question raised by, among others, Peretyat'kin [8]. The first example will be an Ehrenfeucht theory with exactly four countable models with an extension by a constant symbol that has only three countable models. The second example will be a complete theory that is not Ehrenfeucht, but which has an extension by a constant symbol that is Ehrenfeucht. The notational conventions for this paper are standard.
Peretyat'kin introduced the theory of a dense binary branching tree with a meet operator [7]. Dense ω-branching trees have also proven useful [5], [11]. Both of the Theories that will be constructed make use of dense ω-branching trees.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.