Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T18:53:54.907Z Has data issue: false hasContentIssue false

Interpreting groups in ω-categorical structures

Published online by Cambridge University Press:  12 March 2014

Dugald Macpherson*
Affiliation:
School of Mathematical Sciences, Queen Mary and Westfield College, London EI 4NS, England

Abstract

It is shown lhat no infinite group is interpretable in any structure which is homogeneous in a finite relational language. Related questions are discussed for other ω-categorical structures.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baldwin, J. T., Fundamentals of stability theory, Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
[2]Cameron, P. J., Finite permutation groups and finite simple groups, Bulletin of the London Mathematical Society, vol. 13 (1981), pp. 122.CrossRefGoogle Scholar
[3]Cameron, P. J., Orbits and enumeration, Combinatorial theory (Proceedings, Schloss Rauischholzhausen, 1982), Lecture Notes in Mathematics, vol. 969, Springer-Verlag, Berlin, 1982, pp. 8699.Google Scholar
[4]Cherlin, G., Harrington, L., and Lachlan, A. H., 0-categorical, ℵ0-stable structures, Annals of Pure and Applied Logic, vol. 28 (1985), pp. 103135.CrossRefGoogle Scholar
[5]Cherlin, G. and Lachlan, A. H., Stable finitely homogeneous structures, Transactions of the American Mathematical Society, vol. 296 (1986), pp. 815850.CrossRefGoogle Scholar
[6]Graham, R. L., Leeb, K., and Rothschild, B. L., Ramsey's theorem for a class of categories, Advances in Mathematics, vol. 8 (1972), pp. 417433.CrossRefGoogle Scholar
[7]Graham, R. L., Rothschild, B. L., and Spencer, J. H., Ramsey theory, Wiley, New York, 1980.Google Scholar
[8]Hall, P. and Kulatilaka, C. R., A property of locally finite groups, Journal of the London Mathematical Society, vol. 39 (1964), pp. 235239.CrossRefGoogle Scholar
[9]Hodges, W. A., Hodkinson, I. M., and Macpherson, H. D., Omega-categoricity, relative categoricity and coordinatisation, Annals of Pure and Applied Logic, vol. 46 (1990), pp. 169199.CrossRefGoogle Scholar
[10]Hrushovski, U., Locally modular regular types, Classification theory (Proceedings, Chicago, 1985), Lecture Notes in Mathematics, vol. 1292, Springer-Verlag, Berlin, 1987, pp. 132164.CrossRefGoogle Scholar
[11]Hughes, D. R. and Piper, F. C., Projective planes, Springer-Verlag, Berlin, 1973.Google Scholar
[12]Kantor, W. M., Liebeck, M. W., and Macpherson, H. D., 0-categorical structures smoothly approximable by finite substructures, Proceedings of the London Mathematical Society, ser. 3, vol. 59 (1989), pp. 439463.CrossRefGoogle Scholar
[13]Lachlan, A. H., Structures coordinatized by indiscernible sets, Annals of Pure and Applied Logic, vol. 34(1987), pp. 245273.CrossRefGoogle Scholar
[14]Macpherson, H. D., Groups of automorphisms of ℵ0-categorical structures, Quarterly Journal of Mathematics. Oxford, Second Series, vol. 37 (1986), pp. 449465.CrossRefGoogle Scholar
[15]Macpherson, H. D., Infinite permutation groups of rapid growth, Journal of the London Mathematical Society, ser. 2, vol. 35 (1987), pp. 276286.CrossRefGoogle Scholar
[16]Payne, S. E. and Thas, J. A., Finite generalised quadrangles, Research Notes in Mathematics, vol. 110, Pitman, Boston, Massachusetts, 1984.Google Scholar
[17]Ryll-Nardzewski, C., On categoricity in power ≤ ℵ0, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 7 (1959), pp. 545548.Google Scholar
[18]Thomas, S., Reducts of the random graph (preprint).Google Scholar
[19]Zil'ber, B. I., Strongly minimal countably categorical theories, II, Sibirskiĭ Matematicheskiĭ Zhurnal, vol. 25 (1984), no. 3, pp. 7188; English translation, Siberian Mathematical Journal, vol. 25 (1984), pp. 396-412.Google Scholar
[20]Zil'ber, B. I., Strongly minimal countably categorical theories, III, Sibirskiĭ Matematicheskiĭ Zhurnal, vol. 25 (1984), no. 4, pp. 6377; English translation, Siberian Mathematical Journal, vol. 25 (1984), pp. 559-572.Google Scholar