Published online by Cambridge University Press: 12 March 2014
This paper investigates the problem of extending the recursion theoretic construction of a minimal degree to the Kripke [2]-Platek [5] recursion theory on the ordinals less than an admissible ordinal α, a theory derived from the Takeuti [11] notion of a recursive function on the ordinal numbers. As noted in Sacks [7] when one generalizes the recursion theoretic definition of relative recursiveness to α-recursion theory for α > ω the two usual definitions give rise to two different notions of reducibility. We will show that whenever α is either a countable admissible or a regular cardinal of the constructible universe there is a subset of α whose degree is minimal for both notions of reducibility. The result is an excellent example of a theorem of ordinary recursion theory obtainable via two different constructions, one of which generalizes, the other of which does not. The construction which cannot be lifted to α-recursion theory is that of Spector [10]. We sketch the reasons for this in §3.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.