Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T19:15:24.816Z Has data issue: false hasContentIssue false

Orbits of hyperhypersimple sets and the lattice of Σ03 sets

Published online by Cambridge University Press:  12 March 2014

E. Herrmann*
Affiliation:
Humboldt-Universität, 1086 Berlin, Postfach 1297, Deutsche Demokratisch Republik

Abstract

It will be shown that in the lattice of recursively enumerable sets all lattices L3(X) are elementarily definable with parameters, where X is and L3(X) consists of all sets containing X.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Herrmann, E., Der Verband der rekursiv aufzählbaren Mengen, Seminarbericht, vol. 10, Humboldt-Universität, Berlin, 1978.Google Scholar
[2]Herrmann, E., Major Untermengen von hyperhypersimplen Mengen und Idealfamilien (to appear).Google Scholar
[3]Lachlan, A.H., On the lattice of recursively enumerable sets, Transactions of the American Mathematical Society, vol. 130 (1968), pp. 137.CrossRefGoogle Scholar
[4]Lerman, M., Shore, R.A. and Soare, R.I., R-maximal major subsets, Israel Journal of Mathematics, vol. 31 (1978), pp. 118.CrossRefGoogle Scholar
[5]Lerman, M. and Soare, R.I., A decidable fragment of the elementary theory of the lattice of recursively enumerable sets, Transactions of the American Mathematical Society, vol. 257 (1980), pp. 137.CrossRefGoogle Scholar
[6]Rogers, H., Theory of recursive functions and effective computahility, McGraw-Hill, New York, 1967.Google Scholar
[7]Soare, R.I., Recursively enumerable sets and degrees, Bulletin of the American Mathematical Society, vol. 84 (1978), pp. 11491181.CrossRefGoogle Scholar