Published online by Cambridge University Press: 12 March 2014
The satisfiability problem for the two-variable fragment of first-order logic is investigated over finite and infinite linearly ordered, respectively wellordered domains, as well as over finite and infinite domains in which one or several designated binary predicates are interpreted as arbitrary wellfounded relations.
It is shown that FO2 over ordered, respectively wellordered. domains or in the presence of one well-founded relation, is decidable for satisfiability as well as for finite satisfiability. Actually the complexity of these decision problems is essentially the same as for plain unconstrained FO2. namely non-deterministic exponential time.
In contrast FO2 becomes undecidable for satisfiability and for finite satisfiability, if a sufficiently large number of predicates are required to be interpreted as orderings. wellorderings. or as arbitrary wellfounded relations. This undecidability result also entails the undecidability of the natural common extension of FO2 and computation tree logic CTL.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.