Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-21T17:59:07.158Z Has data issue: false hasContentIssue false

Un principe d'ax-kochen-ershov pour des structures intermédiates entre groupes et corps valués

Published online by Cambridge University Press:  12 March 2014

Françoise Delon
Affiliation:
Équipe de Logique Mathématique de Paris VII, 2, Place Jussieu - Case 012, 75251 Paris Cedex 05, France E-mail: delon@logique.jussieu.fr
Patrick Simonetta
Affiliation:
Équipe de Logique Mathématique de Paris VII, 2, Place Jussieu - Case 012, 75251 Paris Cedex 05, France E-mail: simbaud@logique.jussieu.fr

Abstract

An Ax-Kochen-Ershov principle for intermediate structures between valued groups and valued fields.

We will consider structures that we call valued B-groups and which are of the form 〈G, B, *, υ〉 where

G is an abelian group,

B is an ordered group,

– υ is a valuation denned on G taking its values in B,

– * is an action of B on G satisfying: ∀x ϵ GbB υ(x * b) = ν(x) · b.

The analysis of Kaplanski for valued fields can be adapted to our context and allows us to formulate an Ax-Kochen-Ershov principle for valued B-groups: we axiomatise those which are in some sense existentially closed and also obtain many of their model-theoretical properties. Let us mention some applications:

1. Assume that υ(x) = υ(nx) for every integer n ≠ 0 and x ϵ G, B is solvable and acts on G in such a way that, for the induced action, Z[B] ∖ {0} embeds in the automorphism group of G. Then 〈G, B, *, υ〉 is decidable if and only if B is decidable as an ordered group.

2. Given a field k and an ordered group B, we consider the generalised power series field k((B)) endowed with its canonical valuation. We consider also the following structure:

where k((B))+ is the additive group of k((B)), S is a unary predicate interpreting {Tb ∣ b ϵB}, and ×↾k((B))×S is the multiplication restricted to k((B)) × S, structure which is a reduct of the valued field k((B)) with its canonical cross section. Then our result implies that if B is solvable and decidable as an ordered group, then M is decidable.

3. A valued B–group has a residual group and our Ax-Kochen-Ershov principle remains valid in the context of expansions of residual group and value group. In particular, by adding a residual order we obtain new examples of solvable ordered groups having a decidable theory.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bourbaki, N., Algèbre commutative, ch. VI: Valuations, Hermann, Paris, 1964.Google Scholar
[2] Delon, F., ℚ muni de l'arithmétique faible de Penzin est décidable, Proceedings of the American Mathematical Society, vol. 125 (1997), pp. 27112717.Google Scholar
[3] Delon, F. and Simonetta, P., Undecidable wreath products and skew power series fields, this Journal, vol. 63 (1998), pp. 237245.Google Scholar
[4] Kaplanski, I., Maximal fields with valuations, Duke Mathematics Journal, vol. 9 (1942), pp. 303321.Google Scholar
[5] Neumann, B. H., On ordered division rings, Transactions of the American Mathematical Society, vol. 66 (1949), pp. 202252.Google Scholar
[6] Passman, D. S., The algebraic structure of group rings, Krieger, Malabar, Florida, 1985.Google Scholar
[7] Ribenboim, P., Théorie des valuations, Les Presses de l'Université de Montréal, Montréal, 1964.Google Scholar
[8] Schilling, O. F. G., The theory of valuations, Mathematical Surveys, vol. IV, American Mathematical Society, New York, 1950.CrossRefGoogle Scholar
[9] Shoenfield, J. R., A theorem on quantifier elimination, Symposia Mathematica, vol. 5 (1971), pp. 173176.Google Scholar
[10] Simonetta, P., Equivalence élémentaire et décidabilité pour des structures du type groupe agissant sur un groupe abélien, to appear in this Journal.Google Scholar
[11] Simonetta, P., Décidabilité et interprétabilité dans les corps et les groupes non commutatifs, Thèse de l'Université Paris 7 , 1994.Google Scholar
[12] Simonetta, P., Une correspondance entre anneaux partiels et groupes, this Journal, vol. 62 (1997), pp. 6078.Google Scholar
[13] Wehrfritz, B. A. F., Infinite linear groups, Springer-Verlag, Berlin, Heidelberg, New York, 1973.Google Scholar