Published online by Cambridge University Press: 12 March 2014
The Classification Theorem for ℵ0-categorical strictly minimal sets says that if H is strictly minimal and ℵ0-categorical, either H has in effect no structure at all or is essentially an affine or projective space over a finite field. Zil′ber, in [Z2], showed that if H were a counterexample to this Classification Theorem it would interpret a rank 2, degree 1 pseudoplane. Cherlin later noticed (see [CHL, Appendices 2 and 3], for the proof) that the Classification Theorem is a consequence of the Classification Theorem for finite simple groups. In [Z4] and [Z5], Zil′ber found a quite different proof of the Classification Theorem using no deep group theory.
Meanwhile in [Z3], Zil′ber introduced the notion of envelope in an attempt to prove that no complete totally categorical theory T can be finitely axiomatizable. The idea of the proof was to show that if M is a model of such a T and H ⊆ M is strongly minimal, then an envelope of any sufficiently large finite subset of H is a finite model of any fixed finite subset of T. [Z3] contains an error, which Zil′ber has since corrected (in a nontrivial way).
In [CHL], Cherlin, Harrington and Lachlan used the Classification Theorem to expand and reorganize Zil′ber's work. In particular, they generalized most of his work to ℵ0-categorical, ℵ0-stable structures, proved the Morley rank is finite in these structures, and introduced the powerful Coordinatization Theorem (Theorem 3.1 of [CHL]; Proposition 1.14 of the present paper). They also showed that ℵ0-categorical, ℵ0-stable structures are not finitely axiomatizable using a notion of envelope that is the same as Zil′ber's except in one particularly perverse case; [CHL]'s notion of envelope is used throughout the current paper. Peretyat'kin [P] has found an example of an ℵ1-categorical finitely axiomatizable structure.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.