Published online by Cambridge University Press: 12 March 2014
The present paper attempts to state and prove a completeness theorem for the system S5 of [1], supplemented by first-order quantifiers and the sign of equality. We assume that we possess a denumerably infinite list of individual variables a, b, c, …, x, y, z, …, xm, ym, zm, … as well as a denumerably infinite list of n-adic predicate variables Pn, Qn, Rn, …, Pmn, Qmn, Rmn,…; if n=0, an n-adic predicate variable is often called a “propositional variable.” A formula Pn(x1, …,xn) is an n-adic prime formula; often the superscript will be omitted if such an omission does not sacrifice clarity.
My thanks to the referee and to Professor H. B. Curry for their helpful comments on this paper and their careful reading of it. I must express an added debt of gratitude to Curry; without his constant encouragement of my research, publication of these results might have been delayed for years.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.