Published online by Cambridge University Press: 01 December 2016
Let ($\rm L$;C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branching C-relation. We study the reducts of ($\rm L$;C), i.e., the structures with domain $\rm L$ that are first-order definable in ($\rm L$;C). We show that up to existential interdefinability, there are finitely many such reducts. This implies that there are finitely many reducts up to first-order interdefinability, thus confirming a conjecture of Simon Thomas for the special case of ($\rm L$;C). We also study the endomorphism monoids of such reducts and show that they fall into four categories.