Published online by Cambridge University Press: 12 March 2014
C. Karp has shown that if α is an ordinal with ωα = α and A is a linear ordering with a smallest element, then α and α ⊗ A are equivalent in L∞ω up to quantifer rank α. This result can be expressed in terms of Ehrenfeucht-Fraïssé games where player ∀ has to make additional moves by choosing elements of a descending sequence in α. Our aim in this paper is to prove a similar result for Ehrenfeucht-Fraïssé games of length ω1. One implication of such a result will be that a certain infinite quantifier language cannot say that a linear ordering has no descending ω1-sequences (when the alphabet contains only one binary relation symbol). Connected work is done by Hyttinen and Oikkonen in [H] and [O].
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.