Published online by Cambridge University Press: 12 March 2014
Smullyan in [Smu61] identified the recursion theoretic essence of incompleteness results such as Gödel's first incompleteness theorem and Rosser's theorem. Smullyan (improving upon [Kle50] and [Kle52]) showed that, for sufficiently complex theories, the collection of provable formulae and the collection of refutable formulae are effectively inseparable—where formulae and their Gödel numbers are identified. This paper gives a similar treatment for proof speed-up. We say that a formal system S1 is speedable over another system S0 on a set of formulae A iff, for each recursive function h, there is a formula α in A such that the length of the shortest proof of α in S0 is larger than h of the shortest proof of α in S1. (Here we equate the length of a proof with something like the number of characters making it up, not its number of lines.) We characterize speedability in terms of the inseparability by r.e. sets of the collection of formulae which are provable in S1 but unprovable in S0 from the collection A–where again formulae and their Gödel numbers are identified. We provide precise definitions of proof length, speedability and r.e. inseparability below.
We follow the terminology and notation of [Rog87] with borrowings from [Soa87]. Below, ϕ is an acceptable numbering of the partial recursive functions [Rog87] and Φ a (Blum) complexity measure associated with ϕ [Blu67], [DW83].
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.