No CrossRef data available.
Article contents
A MINIMAL CONGRUENCE LATTICE REPRESENTATION FOR $\mathbb{M}_{p+1}$
Published online by Cambridge University Press: 24 March 2020
Abstract
Let $p$ be an odd prime. The unary algebra consisting of the dihedral group of order $2p$, acting on itself by left translation, is a minimal congruence lattice representation of $\mathbb{M}_{p+1}$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
References
Alm, J. and Snow, J., ‘Lattices of equivalence relations closed under the operations of relation algebras’, Algebra Univers. 71 (2014), 187–190.10.1007/s00012-014-0270-7CrossRefGoogle Scholar
Aschbacher, M., ‘Overgroups of primitive groups, II’, J. Algebra 322 (2009), 1586–1626.10.1016/j.jalgebra.2009.04.044CrossRefGoogle Scholar
Baddely, R., ‘A new approach to the finite lattice representation problem’, Period. Math. Hungar. 36 (1998), 17–59.10.1023/A:1004607902533CrossRefGoogle Scholar
DeMeo, W., ‘Expansions of finite algebras and their congruence lattices’, Algebra Universalis 69 (2013), 257–278.10.1007/s00012-013-0226-3CrossRefGoogle Scholar
Dixon, J. D. and Mortimer, B., Permutation Groups (Springer, New York, 1996).10.1007/978-1-4612-0731-3CrossRefGoogle Scholar
Harary, F., Graph Theory (Addison-Wesley, Reading, MA, 1969).10.21236/AD0705364CrossRefGoogle Scholar
Lucchini, A., ‘Representation of certain lattices as intervals in subgroup lattices’, J. Algebra 164 (1994), 85–90.10.1006/jabr.1994.1054CrossRefGoogle Scholar
McKenzie, R. N., McNulty, G. F. and Taylor, W. F., Algebras, Lattices, Varieties, Wadsworth & Brooks/Cole Mathematics Series, vol. I (Wadsworth & Brooks/Cole, Monterey, CA, 1987).Google Scholar
McNulty, G. F., ‘A juggler’s dozen of easy problems’, Algebra Universalis 74 (2015), 17–34.CrossRefGoogle Scholar
Pálfy, P. P., ‘Intervals in subgroup lattices of finite groups’, in: Groups ’93 Galway/St. Andrews, Vol. 2, London Mathematical Society Lecture Note Series, 212 (Cambridge University Press, Cambridge, 1995), 482–494.10.1017/CBO9780511629297.014CrossRefGoogle Scholar
Pálfy, P. P., ‘Groups and lattices’, in: Groups ’01 St. Andrews/Oxford, Vol. 2, London Mathematical Society Lecture Note Series, 305 (Cambridge University Press, Cambridge, 2003), 428–454.Google Scholar
Pálfy, P. P. and Pudlák, P., ‘Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups’, Algebra Universalis 11 (1980), 22–27.10.1007/BF02483080CrossRefGoogle Scholar
Snow, J., ‘A constructive approach to the finite congruence lattice representation problem’, Algebra Universalis 43 (2000), 279–293.10.1007/s000120050159CrossRefGoogle Scholar
Stone, M. G. and Weedmark, R. H., ‘On representing 𝕄n’s by congruence lattices of finite algebras’, Discrete Math. 44 (1983), 299–308.10.1016/0012-365X(83)90195-4CrossRefGoogle Scholar