Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T14:32:47.956Z Has data issue: false hasContentIssue false

Banach Algebras Which are a Direct Sum of Division Algebras

Published online by Cambridge University Press:  09 April 2009

Antonio Fernandez Lopez
Affiliation:
Departamento de Algebra, Geometria y Topologia Universidad de Malaga29080 Malaga, Spain
Eulalia Garcia Rus
Affiliation:
Departamento de Algebra, Geometria y Topologia Universidad de Malaga29080 Malaga, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note it is proved that a (real or complex) semiprime Banach algebra A satisfying xAx = x2Ax2 for every xA is a direct sum of a finite number of division Banach algebras.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

Esterle, J. and Oudadess, M. (1986), ‘Structure of Banach algebras A satisfying Ax2 = Ax for every xA’, Proc. Amer. Math. Soc. (1) 96, 9194.Google Scholar
Jacobson, N. (1956), Structure of rings, (Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc. Providence, R.I.).Google Scholar
Kaplansky, I. (1948), ‘Regular Banach algebras’, J. Indian Math. Soc. 12, 5762.Google Scholar
Rickart, C. E. (1974), General theory of Banach algebras, (Krieger).Google Scholar