Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T23:41:12.751Z Has data issue: false hasContentIssue false

Characterizations of Quasi-Metrizable Bitopological Spaces

Published online by Cambridge University Press:  09 April 2009

T. G. Raghavan
Affiliation:
Department of MathematicsUniversity of AucklandPrivate Bag, Auckland, New Zealand
I. L. Reilly
Affiliation:
Department of MathematicsUniversity of AucklandPrivate Bag, Auckland, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove that a pairwise Hausdorff bitopological space is quasi-metrizable if and only if for each point xX and for i, j = 1,2, ij, one can assign nbd bases { S(n, i; x) | n = 1, 2,… } such that (i) yS (n − 1, i; x) imples S(n, i; x) ∩ S (n, j; y) = φ, (ii) yS (n, i; x) implies S (n, i; y) ⊂ S(n − 1, i; x). We derive two further results from this.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Kelly, J. C., ‘Bitopological spaces’, Proc. London Math. Soc. 13 (1963), 7189.CrossRefGoogle Scholar
[2]Lane, E. P., ‘Bitopological spaces and quasi-uniform spaces’, Proc. London Math. Soc. 17 (1967), 241256.CrossRefGoogle Scholar
[3]Murdeshwar, M. C. and Naimpally, S. A., Quasi-uniform topological spaces (Noordhoff, Groningen, 1966).Google Scholar
[4]Pareek, C. M., ‘Bitopological and quasi-metric spaces’, J. Univ. Kuwait Sci. 6 (1980), 17.Google Scholar
[5]Patty, C. W., ‘Bitopological spaces’, Duke Math. J. 34 (1967), 387392.CrossRefGoogle Scholar
[6]Reilly, I. L., ‘Quasi-guage spaces’, J. London Math. Soc. 6 (1973), 481487.CrossRefGoogle Scholar
[7]Romoguera, S., ‘Two characterizations of quasi-pseudo-metrizable bitopological spaces’, J. Austral. Math. Soc., 35 (1983), 327333.CrossRefGoogle Scholar
[8]Romoguera, S., ‘On bitopological quasi-pseudometrization’, J. Austral. Math. Soc. 36 (1984), 126129.CrossRefGoogle Scholar
[9]Salbany, S., ‘Quasi-metrization of bitopological spaces’, Arch. Math. 23 (1972), 299316.CrossRefGoogle Scholar
[10]Stoltenberg, R., ‘Some properties of quasi-uniform spaces’, Proc. London Math. Soc. 17 (1967), 342354.Google Scholar
[11]Wilson, W. A., ‘On quasi-metric spaces’, Amer. J. Math. 53 (1931), 675684.CrossRefGoogle Scholar