No CrossRef data available.
Published online by Cambridge University Press: 01 April 2008
The energy of a unit vector field X on a closed Riemannian manifold M is defined as the energy of the section into T1M determined by X. For odd-dimensional spheres, the energy functional has an infimum for each dimension 2k+1 which is not attained by any non-singular vector field for k>1. For k=1, Hopf vector fields are the unique minima. In this paper we show that for any closed Riemannian manifold, the energy of a frame defined on the manifold, possibly except on a finite subset, admits a lower bound in terms of the total scalar curvature of the manifold. In particular, for odd-dimensional spheres this lower bound is attained by a family of frames defined on the sphere minus one point and consisting of vector fields parallel along geodesics.
The first author is supported by CNPq (Brazil) Grant No. 301207/80 and by Fapesp (Brazil) Proj. Tem. No. 1999/02684-5. The second author is partially supported by MEC/FEDER Grant No. MTM2004-04934-C04-02 (Spain). This work has been carried out during a post-doctoral stay of the second author supported by DGU (Spain) No. HBE2002-008.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.