Article contents
Nonsingular rings with essential socles
Published online by Cambridge University Press: 09 April 2009
Extract
This paper is a study of nonsingular rings with essential socles. These rings were first investigated by Goldie [5] who studied the Artinian case and showed that an indecomposable nonsingular generalized uniserial ring is isomorphic to a full blocked triangular matrix ring over a sfield. The structure of nonsingular rings in which every ideal generated by a primitive idempotent is uniform was determined for the Artinian case by Gordon [6] and Colby and Rutter [2], and for the semiprimary case by Zaks [12]. Nonsingular rings with essential socles and finite identities were characterized by Gordon [7] and the author [10]. All these results were obtained by representing the rings in question as matrix rings. In this paper a matrix representation of arbitrary nonsingular rings with essential socles is found (section 2). The above results are special cases of this representation. A general method for representing rings as matrices is developed in section 1.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1974
References
- 1
- Cited by