Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-21T10:15:57.087Z Has data issue: false hasContentIssue false

A NOTE ON THE CLOSURE OF CONVOLUTION POWER MIXTURES (RANDOM SUMS) OF EXPONENTIAL DISTRIBUTIONS

Published online by Cambridge University Press:  01 February 2008

J. M. P. ALBIN*
Affiliation:
Department of Mathematics, Chalmers University of Technology, 412 96 Gothenburg, Sweden (email: palbin@math.chalmers.se)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We make a correction to an important result by Cline [D. B. H. Cline, ‘Convolutions of distributions with exponential tails’, J. Austral. Math. Soc. (Series A)43 (1987), 347–365; D. B. H. Cline, ‘Convolutions of distributions with exponential tails: corrigendum’, J. Austral. Math. Soc. (Series A)48 (1990), 152–153] on the closure of the exponential class under convolution power mixtures (random summation).

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

References

[1]Albin, J. M. P. and Sundén, M., ‘On the asymptotic behaviour of Lévy processes. Part I: subexponential and exponential processes’, Preprint,2007. http://www.math.chalmers.se/∼palbin/levyI.pdf.Google Scholar
[2]Braverman, M., ‘Suprema and sojourn times of Lévy processes with exponential tails’, Stochastic Process. Appl. 68 (1997), 265283.CrossRefGoogle Scholar
[3]Braverman, M. and Samorodnitsky, G., ‘Functionals of infinitely divisible stochastic processes with exponential tails’, Stochastic Process. Appl. 56 (1995), 207231.CrossRefGoogle Scholar
[4]Cline, D. B. H., ‘Convolutions of distributions with exponential tails’, J. Austral. Math. Soc. (Series A) 43 (1987), 347365.CrossRefGoogle Scholar
[5]Cline, D. B. H., ‘Convolutions of distributions with exponential tails: corrigendum’, J. Austral. Math. Soc. (Series A) 48 (1990), 152153.CrossRefGoogle Scholar
[6]Embrechts, P. and Goldie, M., ‘On closure and factorization properties of subexponential and related distributions’, J. Austral. Math. Soc. (Series A) 29 (1980), 243256.CrossRefGoogle Scholar
[7]Embrechts, P. and Goldie, M., ‘On convolution tails’, Stochastic Process. Appl. 13 (1982), 263278.CrossRefGoogle Scholar
[8]Embrechts, P., Goldie, M. and Veraverbeke, N., ‘Subexponentiality and infinite divisibility’, Z. Wahrsch. 49 (1979), 335347.CrossRefGoogle Scholar
[9]Pakes, A. G., ‘Convolution equivalence and infinite divisibility’, J. Appl. Probab. 44 (2007), 295305.CrossRefGoogle Scholar
[10]Pitman, E. J. G., ‘Subexponential distribution functions’, J. Austral. Math. Soc. (Series A) 29 (1980), 337347.CrossRefGoogle Scholar
[11]Sato, K., Lévy processes and infinitely divisible distributions (Cambridge University Press, Cambridge, 1999).Google Scholar
[12]Sgibner, M. S., ‘Asymptotics of inifinitely divisible distribution in ’, Siberian Math. J. 31 (1990), 115119.CrossRefGoogle Scholar
[13]Shimura, T. and Watanabe, T., ‘Infinite divisibility and generalized subexponentiality’, Bernoulli 11 (2005), 445469.CrossRefGoogle Scholar