No CrossRef data available.
Article contents
On Hermite-Fejér interpolation with equidistant nodes
Part of:
Approximations and expansions
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
This paper deals with Hermite-Fejér interpolation of functions defined on a semi-infinite interval but the nodes are equally spaced. It is shown that, under certain conditions, the interpolation process has poor approximation properties.
MSC classification
Secondary:
41A05: Interpolation
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1990
References
[1]Berman, D. L., ‘Divergence of the Hermite-Fejér interpolation process’ (Russian), Uspehi Mat. Nauk 13 (80) (1958), no. 3, 143–148.Google Scholar
[3]Gonska, H. H. and Knoop, H. B., ‘On Hermite-Fejér interpolation: a bibliography (1914–1987)’, Studia Sci. Math. Hungar, to appear.Google Scholar
[4]Gradshteyn, I. S. and Ryzhik, I. M., Tables of integrals, series, and products, (Corrected and enlarged edition, Academic Press New York, 1980).Google Scholar
[5]Kuipers, L. and Niederreiter, H., Uniform distribution of sequences (Wiley, New York, 1974).Google Scholar
[6]Mills, T. M., ‘Some techniques in approximation theory’, Math. Sci. 5 (1980), 105–120.Google Scholar
[7]Runck, Paul Otto, ‘Sur la convergence des polynomes d'interpolation de Lagrange et d' Hermite aux noeuds equidistants’ C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 245 (1957), 1211–1213.Google Scholar
[8]Szegö, G., ‘Über gewisse Interpolationspolynome, die zu den Jacobischen und Laguerreschen Abszissen gehören’, Math. Z. 35 (1932), 579–602.CrossRefGoogle Scholar
[9]Szegö, Gábor, Orthogonal polynomials (4th ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, R. I., 1975).Google Scholar
You have
Access