Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-07T22:15:09.544Z Has data issue: false hasContentIssue false

Projective descriptions of the (LF)-spaces of type LBp(A), F)

Published online by Cambridge University Press:  09 April 2009

Angela A. Albanese
Affiliation:
Dipartimento di Matematica ‘E. De Giorgi’ Università di Lecce, C.P. 193 Via Per Arnesano 73100 LecceItaly e-mail: albanese@ilenic.unile.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let 1 < p < + ∞ or p = 0 and let A = (an)n be an increasing sequence of strictly positive weights on I. Let F be a Fréchet space. It is proved that if λp(A) satisfies the density condition of Heinrich and a certain condition (Ct) holds, then the (LF)-space LBip(A), F) is a topological subspace of Lbp(A), F). It is also proved that these conditions are necessary provided F = λq(A) or F contains a complemented copy of Iq with 1 < pq < +∞.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Albanese, A. A., ‘A projective description of Fréchet valued co-echelon spaces of infinite order’, Results Math. 37 (2000), 283290.Google Scholar
[2]Bierstedt, K. D. and Bonet, J., ‘Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces’, Math. Nachr. 135 (1988), 149180.Google Scholar
[3]Bierstedt, K. D. and Bonet, J., ‘Dual density condition in (DF)-spaces, I’, Results Math. 14 (1988), 242274.Google Scholar
[4]Bierstedt, K. D. and Bonet, J., ‘Projective descriptions of weighted inductive limits: the vector valued cases’, in: Advances in the theory of Fréchet spaces (ed. Terzioglu, T.) (Kluwer Academic Publisher, 1989) pp. 195221.Google Scholar
[5]Bierstedt, K. D. and Meise, R., ‘Distinguished echelon spaces and the projective description of weighted inductive limits of type (X)’, in: Aspects of mathematics and its applications (ed. Barroso, J. A.) (Elsevier, North-Holland Library, Amsterdam, 1986) pp. 169226.CrossRefGoogle Scholar
[6]Bierstedt, K. D., Meise, R. and Summers, W. H., ‘Köthe sets and Köthe sequence spaces’, in: Functional analysis, holomorphy and approximation theory (ed. Barroso, J. A.), North-Holland Math. Studies 71 (North-Holland, Amsterdam, 1982) pp. 2791.Google Scholar
[7]Bierstedt, K. D., Meise, R. and Summers, W. H., ‘A projective description of weighted inductive limits’, Trans. Amer. Math. Soc. 272 (1982), 107160.Google Scholar
[8]Bonet, J. and Dìaz, J. C., ‘The problem of topologies of Grothendieck and the class of Fréchet T-spaces’, Math. Nachr. 150 (1991), 109118.Google Scholar
[9]Bonet, J., Dìaz, J. C. and Taskinen, J., ‘Tensor stable Fréchet and (DF)-spaces’, Collect. Math. 42 (1991), 199236.Google Scholar
[10]Bonet, J., Domański, P. and Mujica, J., ‘Complete spaces of vector-valued holomorphic germs’, Math. Scand. 75 (1994), 150160.Google Scholar
[11]Dierolf, S., ‘On spaces of continuous linear mappings between locally convex spaces’, Note Mat. 5 (1985), 147255.Google Scholar
[12]Dierolf, S. and Domański, P., ‘Factorization of Montel operators’, Studia Math. 107 (1993), 1532.Google Scholar
[13]Domański, P., ‘On spaces of continuous functions with values in coechelon spaces’, Rev. R. Acad. Cienc. Exact. Fis. Nat. (Esp) 92 (1998), 6166.Google Scholar
[14]Heinrich, S., ‘Ultrapowers of locally convex spaces and applications I’, Math. Nachr. 118 (1984), 285315.CrossRefGoogle Scholar
[15]Köthe, G., Topological vector spaces I, II (Springer, Berlin, 1969, 1979).Google Scholar
[16]Mangino, E., Frerick, L., Wengenroth, J. and Dierolf, S., ‘Strong regularity conditions for some classes of (LF)-spaces’, in: Functional analysis (eds. Dierolf, S., Dineen, S. and Domański, P.) (W. de Gruyter, Berlin, 1996) pp. 293304.Google Scholar
[17]Carreras, P. Pèrez and Bonet, J., Barrelled locally convex spaces, North-Holland Math. Studies 131 (North-Holland, Amsterdam, 1987).Google Scholar
[18]Peris, A., ‘Topological tensor product of Fréchet-Schwartz space and a Banach space’, Studia Math. 106 (1993), 189196.Google Scholar
[19]Schmets, J., ‘Spaces of continuous functions’, in: Functional analysis: Surveys and recent results (eds. Bierstedt, K. D. and Fuchssteiner, B.), North-Holland Math. Studies 27 (North-Holland, Amsterdam, 1977) pp. 89104.Google Scholar
[20]Schmets, J., Spaces of vector-valued continuous functions, Lecture Notes in Math. 1003 (Springer, Berlin, 1983).CrossRefGoogle Scholar
[21]Taskinen, J., ‘The projective tensor product of Fréchet-Montel spaces’, Studia Math. 91 (1988), 1730.CrossRefGoogle Scholar
[22]Vogt, D., ‘Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist’, J. Reine Angew. Math. 345 (1983), 182200.Google Scholar
[23]Vogt, D., ‘Some results on continuous linear maps between Fréchet spaces’, in: Functional analysis: Surveys and recent results III (eds. Bierstedt, K. D. and Fuchssteiner, B.), North-Holland Math. Studies 90 (North-Holland, Amsterdam, 1984) pp. 349381.Google Scholar