Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T13:08:08.006Z Has data issue: false hasContentIssue false

The range of a multimeasure

Published online by Cambridge University Press:  09 April 2009

Le Van Tu
Affiliation:
Department of Mathematics University of Western Australia Nedlands 6009 Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, the author generalizes the concept of thinness introduced by Kingman and Robertson (1968) to study the convexity of the range of a multimeasure. It is proved that every thin multimeasure taking values in a Fréchet space has convex range, and that, for a suitable measureable space, if a multimeasure is non-atomic, then the weak closure of its range is convex.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

Costé, A. (1975), ‘Sur les multimesures à valeurs fermées bornées d'un espace de Banach’, C. R. Acad. Sci. Paris 280, Série A, 567570.Google Scholar
Costé, A. (1976), ‘Densité des sélecteurs d'une multimesure à valeurs convexes fermées bornées d'un espace de Banach Séparable’, C. R. Acad. Sci. Paris 282 Série A, 967969.Google Scholar
Kingman, J. F. C. and Robertson, A. P. (1968), ‘On a theorem of Lyapunov’, J. London Math. Soc. 43, 347351.CrossRefGoogle Scholar
Kluvánek, I. (1973), ‘The range of a vector-valued measure’, Math. Systems Theory 7, 4454.CrossRefGoogle Scholar
Kluvánek, I. and Knowles, G. (1975), Vector measures and control systems (North-Holland, Amsterdam, 1975).Google Scholar
Knowles, G. (1975), ‘Lyapunov vector measures’, Siam J. Control 13, 294303.CrossRefGoogle Scholar
Liapounoff, A. (1940), ‘Sur les fonctions-vecteurs complètement additives’, Bull. Acad. Sci. URSS Sér. Math. (Izvestiya Akad. Nauk SSSR Ser. Mat.) 4, 465478.Google Scholar
Tolstonogov, A. A. (1975), ‘On the theorems of Radon-Nikodym and A. A. Lyapunov for a multivalued measure’, Soviet Math. Dokl. 16, 15881592Google Scholar
(Dokl. Akad. Nauk SSSR, 225, 10231026).Google Scholar