Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T17:51:43.806Z Has data issue: false hasContentIssue false

Some direct and inverse theorems in approximation of functions

Published online by Cambridge University Press:  09 April 2009

R. N. Mohapatra
Affiliation:
Department of MathematicsAmerican University of Beirut BeirutLebanon
D. C. Russell
Affiliation:
Department of MathematicsYork University Downsview, Ontario M3J 1P3, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper is concerned with the determination of the degree of convergence of a sequence of linear operators connected with the Fourier series of a function of class Lp (p > 1) to that function and some inverse results in relating the convergence to the classes of functions. In certain cases one can obtain the saturation results too. In all cases Lp norm is used.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

[1]Alexits, G., ‘Über die Annäherung einer stetigen Funktion durch die Cesàroschen Mittel ihrer Fourrierreihe’, Math. Ann. 100 (1928), 264277.CrossRefGoogle Scholar
[2]Borwein, D., ‘On products of sequences’, J. London Math. Soc. 33 (1958), 212220.CrossRefGoogle Scholar
[3]Favard, J., ‘Sur la saturation des procédés de sommation’, J. Math. Pures Appl. 36 (1957), 359372.Google Scholar
[4]Goel, D. S., Holland, A. S. B., Nasim, C. and Sahney, B. N., ‘Best approximation by a saturation class of polynomial operators’, Pacific J. Math. 55 (1974), 149155.CrossRefGoogle Scholar
[5]Hardy, G. H. and Littlewood, J. E., ‘Some properties of fractional integrals I’, Math. Z. 27 (1928), 565600.CrossRefGoogle Scholar
[6]Hardy, G. H. and Littlewood, J. E., ‘A convergence criterion for Fourier series’, Math. Z. 28 (1928), 612634.CrossRefGoogle Scholar
[7]Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities (Cambridge, 1934, 1967).Google Scholar
[8]Holland, A. S. B., Sahney, B. N. and Tzimbalario, J., ‘On the degree of approximation of a class of functions by Fourier Series’, Acta. Sci. Math. (Szeged) 38 (1976), 6972.Google Scholar
[9]Khan, H. H. and Rizvi, S. M., ‘On the saturation classes of functions by (N, pn, qn) method’, Indian J. Pure Appl. Math. 6 (1974), 12621269.Google Scholar
[10]Khan, H. H., ‘On the degree of approximation of functions belonging to class Lip(α, p)’, Indian J. Pure Appl. Math. 5 (1974), 132136.Google Scholar
[11]Mohapatra, R. N. and Sahney, B. N., ‘Saturation of a class of linear operators involving a lower-triangular matrix’, Acta Sci. Math. (Szeged), to appear.Google Scholar
[12]Sahney, B. N. and Rao, V. G., ‘Error bounds in the approximation of functions’, Bull. Austral. Math. Soc. 6 (1972), 1118.CrossRefGoogle Scholar
[13]Sunouchi, G., ‘On the class of saturation in the theory of approximation II, III’, Tôhoku Math. J. 13 (1961), 112118; 320–328.Google Scholar
[14]Sunouchi, G., ‘Local saturation in convolution operators’, to appear.Google Scholar
[15]Sunouchi, G. and Watari, C., ‘On determination of the class of saturation in the theory of approximation of functions’, Proc. Japan Acad. 34 (1958), 477481.Google Scholar
[16]Sunouchi, G. and Watari, C., ‘On determination of the class of saturation in the theory of approximation of functions II, Tôhoku Math. J. 11 (1959), 480488.CrossRefGoogle Scholar
[17]Zamanski, M., ‘Classes de saturation de certains procédés d'approximation des séries de Fourier’, Ann. Sci. Ecole Norm. Sup. 66 (1949), 1993.CrossRefGoogle Scholar
[18]Zygmund, A., Trigonometric Series, Vol. I and Vol. II (Cambridge University Press, 1968).Google Scholar