Published online by Cambridge University Press: 09 April 2009
In this paper we investigate some new sequence spaces which naturally emerge from the concept of almost convergence. Just as ordinary, absolute and strong summability, it is expected that almost convergence must give rise to almost, absolutely almost and strongly almost summability. Almost and absolutely almost summable sequences have been discussed by several authors. The object of this paper is to introduce the spaces of strongly almost summable sequences which happen to be complete paranormed spaces under certain conditions. Some topological results, characterisation of strongly almost regular matrices, uniqueness of generalized limits and inclusion relations of such sequences have been discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.