Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T20:06:19.525Z Has data issue: false hasContentIssue false

Spans of translates in Lp(G)

Published online by Cambridge University Press:  09 April 2009

R. E. Edwards
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this paper, G denotes a Hausdorff locally compact Abelian group, X its character group, and Lp(G) (1 ≦ p ≦ ∞) the usual Lebesgue space formed relative to the Haar measure on G. If fLp(G), we denote by Tp[f] the closure (or weak closure, if p = ∞) in Lp(G) of the set linear combinations of translates of f.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1965

References

[1]Wiener, N., The Fourier integral and certain of its applications (Cambridge Univ. Press (1933)).Google Scholar
[2]Segal, I., The group algebra of a locally compact group. Trans. Amer. Math. Soc. 61 (1947), 69105.Google Scholar
[3]Pollard, H., The closure of translations in Lp. Proc. Amer. Math. Soc. 2 (1951), 100104.Google Scholar
[4]Agnew, R. P., Spans in Lebesgue and uniform spaces of peak functions. Amer. J. Math. 67 (1945), 431436.Google Scholar
[5]Agnew, R. P., Spans in Lebesgue and uniform spaces of step functions. Bull. Amer. Math. Soc. 51 (1945), 229233.Google Scholar
[6]Edwards, R. E., The exchange formula for distributions and of spans translates. Proc. Amer. Math. Soc. 4 (1953), 888894.CrossRefGoogle Scholar
[7]Kahane, J.-P., et Salem, R., Ensembles parfaits et séries trigonométriques. Act. Sci. et Ind. 1301 (Hermann, Paris, (1963)).Google Scholar
[8]Kahane, J.-P., Transformées de Fourier de fonctions sommables. Proc. Int. Congress Math. Stockholm 1962, 114131.Google Scholar
[9]Rudin, W., Fourier analysis on groups (Interscience Publishers (1962)).Google Scholar
[10]Kahane, J.-P., et Salem, R., Sur les ensembles linéaires ne portant pas de pseudomesures. C. R. Acad. Sci. Paris 243 (1956), 11851187.Google Scholar
[11]Beurling, A., Sur les spectres des fonctions. Colloques Int. du C.N.R.S. XV. Analyse Harmonique. Nancy 1947. (C.N.R.S., Paris (1949)).Google Scholar
[12]Courant, R., Methods of Mathematical physics, Vol. II. Partial Differential Equations (Interscience Publishers (1962)).Google Scholar
[13]Littman, W., Fourier transforms of surface-carried measures and differentiability of surface averages. Bull. Amer. Math. Soc. 69 (1963), 766770.Google Scholar
[14]Schwartz, L., Théorie des Distributions. Tome I. Act. Sci. et Ind. 1091 (Paris (1950)).Google Scholar
[15]Herz, C. S., A note on the span of translations in Lp. Proc. Amer. Math. Soc. 8 (1957), 724727.Google Scholar
[16]Herz, C. S., The spectral theory of bounded functions. Trans. Amer. Math. Soc. 94 (1960), 181232.Google Scholar
[17]Pollard, H., The harmonic analysis of bounded functions. Duke Math. J. 20 (1953), 499512.Google Scholar