Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T14:55:22.787Z Has data issue: false hasContentIssue false

The structure of finite groups in which permutability is a transitive relation

Published online by Cambridge University Press:  09 April 2009

Derek J. S. Robinson
Affiliation:
Department of Mathematics University of Illinois in Urbana-Champaign1409 West Green Street Urbana IL 61801USA e-mail: robinson@math.uiuc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure of finite groups in which permutability is transitive (PT-groups) is studied in detail. In particular a finite PT-group has simple chief factors and the p-chief factors fall into at most two isomorphism classes. The structure of finite T-groups, that is, groups in which normality is transitive, is also discussed, as is that of groups generated by subnormal or normal PT-subgroups.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Agrawal, R. K., ‘Finite groups whose subnormal subgroups permute with all Sylow subgroups’, Proc. Amer. Math. Soc. 47 (1975), 7783.CrossRefGoogle Scholar
[2]Beidleman, J. C., Brewster, B. and Robinson, D. J. S., ‘Criteria for permutability to be transitive in finite groups’, J. Algebra 222 (1999), 400412.CrossRefGoogle Scholar
[3]Cossey, J., ‘Finite groups generated by subnormal T-subgroups’, Glasgow Math. J. 37 (1995), 363371.CrossRefGoogle Scholar
[4]Cossey, J., ‘Finite insoluble T-groups’, preprint.Google Scholar
[5]Dedekind, R., ‘Über Gruppen, deren sämmtliche Teiler Normalteiler sind’, Math. Ann. 48 (1897), 548561.CrossRefGoogle Scholar
[6]Gaschütz, W., ‘Gruppen, in denen das Normalteilersein transitiv ist’, J. Reine Angew. Math. 198 (1957), 8792.CrossRefGoogle Scholar
[7]Huppert, B. and Blackburn, N., Finite groups, III (Springer, Berlin, 1982).Google Scholar
[8]Kegel, O. H., ‘Sylow-Gruppen und Subnormalteiler endlicher Gruppen’, Math. Z. 78 (1962), 205221.CrossRefGoogle Scholar
[9]Kegel, O. H., ‘Über den Normalisator von subnormalen und erreichbaren Untergruppen’, Math. Ann. 163 (1966), 248258.CrossRefGoogle Scholar
[10]Lennox, J. C. and Stonehewer, S. E., Subnormal subgroups (Oxford, 1987).Google Scholar
[11]Ore, O., ‘Contributions to the theory of groups of finite order’, Duke Math. J. 5 (1939), 431460.CrossRefGoogle Scholar
[12]Peng, T. A., ‘Finite groups with pro-normal subgroups’, Proc. Amer. Math. Soc. 20 (1969), 232234.CrossRefGoogle Scholar
[13]Robinson, D. J. S., ‘A note on finite groups in which normality is transitive’, Proc. Amer. Math. Soc. 19 (1968), 933937.CrossRefGoogle Scholar
[14]Robinson, D. J. S., ‘A survey of groups in which normality or permutability is a transitive relation’, in: Algebra: recent advances (Indian National Science Academy, New Delhi, 1999) pp. 171181.Google Scholar
[15]Schmidt, R., Subgroup lattices of groups (de Gruyter, Berlin, 1994).CrossRefGoogle Scholar
[16]Zacher, G., ‘I gruppi risolubili finiti in cui i sottogruppi di composizione coincidano con i sottogruppi quasi-normali’, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Natur. 37 (1964), 150154.Google Scholar