Article contents
STRUCTURE THEOREM FOR $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathcal{AN}$-OPERATORS
Published online by Cambridge University Press: 30 April 2014
Abstract
In this paper we prove a structure theorem for the class of $\mathcal{AN}$-operators between separable, complex Hilbert spaces which is similar to that of the singular value decomposition of a compact operator. Apart from this, we show that a bounded operator is $\mathcal{AN}$ if and only if it is either compact or a sum of a compact operator and scalar multiple of an isometry satisfying some condition. We obtain characterizations of these operators as a consequence of this structure theorem and deduce several properties which are similar to those of compact operators.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © 2014 Australian Mathematical Publishing Association Inc.
References
- 10
- Cited by