Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T21:39:11.869Z Has data issue: false hasContentIssue false

TRANSVERSAL HARMONIC THEORY FOR TRANSVERSALLY SYMPLECTIC FLOWS

Published online by Cambridge University Press:  01 April 2008

HONG KYUNG PAK*
Affiliation:
Faculty of Information and Science, Daegu Haany University, Kyungsan 712-715, Korea (email: hkpak@dhu.ac.kr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop the transversal harmonic theory for a transversally symplectic flow on a manifold and establish the transversal hard Lefschetz theorem. Our main results extend the cases for a contact manifold (H. Kitahara and H. K. Pak, ‘A note on harmonic forms on a compact manifold’, Kyungpook Math. J.43 (2003), 1–10) and for an almost cosymplectic manifold (R. Ibanez, ‘Harmonic cohomology classes of almost cosymplectic manifolds’, Michigan Math. J.44 (1997), 183–199). For the point foliation these are the results obtained by Brylinski (‘A differential complex for Poisson manifold’, J. Differential Geom.28 (1988), 93–114), Haller (‘Harmonic cohomology of symplectic manifolds’, Adv. Math.180 (2003), 87–103), Mathieu (‘Harmonic cohomology classes of symplectic manifolds’, Comment. Math. Helv.70 (1995), 1–9) and Yan (‘Hodge structure on symplectic manifolds’, Adv. Math.120 (1996), 143–154).

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

References

[1]Alvarez-Lopez, J., ‘The basic component of the mean curvature of Riemannian foliations’, Ann. Global Anal. Geom. 10 (1992), 179194.CrossRefGoogle Scholar
[2]Benson, C. and Gordon, C., ‘Kähler and symplectic structures on nilmanifolds’, Topology 27 (1988), 513518.CrossRefGoogle Scholar
[3]Blair, D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509 (Springer, Berlin, 1976).CrossRefGoogle Scholar
[4]Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203 (Birkhäuser, Basel, 2001).Google Scholar
[5]Brylinski, J. L., ‘A differential complex for Poisson manifold’, J. Differential Geom. 28 (1988), 93114.CrossRefGoogle Scholar
[6]Chinea, D., de León, M. and Marrero, J. C., ‘Topology of cosymplectic manifolds’, J. Math. Pures Appl. 72 (1993), 567591.Google Scholar
[7]Chinea, D., de León, M. and Marrero, J. C., ‘Spectral sequences on Sasakian and cosymplectic manifolds’, Houston J. Math. 23 (1997), 631649.Google Scholar
[8]Haller, S., ‘Harmonic cohomology of symplectic manifolds’, Adv. Math. 180 (2003), 87103.CrossRefGoogle Scholar
[9]Ibanez, R., ‘Harmonic cohomology classes of almost cosymplectic manifolds’, Michigan Math. J. 44 (1997), 183199.CrossRefGoogle Scholar
[10]Kamber, F. and Tondeur, Ph., ‘De Rham–Hodge theory for Riemannian foliations’, Math. Ann. 277 (1987), 415431.CrossRefGoogle Scholar
[11]Kitahara, H. and Pak, H. K., ‘A note on harmonic forms on a compact manifold’, Kyungpook Math. J. 43 (2003), 110.Google Scholar
[12]Mathieu, O., ‘Harmonic cohomology classes of symplectic manifolds’, Comment. Math. Helv. 70 (1995), 19.CrossRefGoogle Scholar
[13]McDuff, D., ‘Examples of simply-connected symplectic non-Kähler manifolds’, J. Differential Geom. 20 (1984), 267277.CrossRefGoogle Scholar
[14]Molino, P., ‘Orbit-like foliations’, in: Geometric Study of Foliations (World Scientific, Singapore, 1994), pp. 97119.Google Scholar
[15]Ogawa, Y., ‘On C-harmonic forms on a compact Sasakian space’, Tohoku Math. J. 19 (1967), 267296.Google Scholar
[16]Pak, H. K., ‘On one-dimensional metric foliations in Einstein spaces’, Illinois J. Math. 36 (1992), 594599.CrossRefGoogle Scholar
[17]Pak, H. K., ‘Canonical flows of Einstein–Weyl manifolds’, The 3rd Pacific Rim Geometry Conference (International Press, Cambridge, MA, 1998), pp. 307318.Google Scholar
[18]Pak, H. K., ‘On harmonic theory in flows’, Canad. Math. Bull. 46 (2003), 617631.CrossRefGoogle Scholar
[19]Pak, H. K. and Takahashi, T., ‘Harmonic forms in a compact contact manifold’, Tohoku Math. Publ. 20 (2001), 125138.Google Scholar
[20]Rumin, M., ‘Formes différéntielles sur les variétés de contact’, J. Differential Geom. 39 (1994), 281330.CrossRefGoogle Scholar
[21]Saralegui, M., The Euler Class for Flows of Isometries, Research Notes in Mathematics, 131 (Pitman, Boston, MA, 1985), pp. 220227.Google Scholar
[22]Tachibana, S., ‘On a decomposition of C-harmonic forms on a compact Sasakian space’, Tohoku Math. J. 19 (1967), 198212.CrossRefGoogle Scholar
[23]Tachibana, S., ‘On harmonic tensors in a compact Sasakian spaces’, Tohoku Math. J. 17 (1965), 271284.CrossRefGoogle Scholar
[24]Tondeur, Ph., Geometry of Foliations, Monographs in Mathematics, 90 (Birkhäuser, Basel, 1997).CrossRefGoogle Scholar
[25]Vaisman, I., ‘Locally conformal symplectic manifolds’, Int. J. Math. Sci. 8 (1985), 521536.CrossRefGoogle Scholar
[26]Webster, S. M., ‘Pseudo-hermitian structure on a real hypersurface’, J. Differential Geom. 13 (1978), 2541.CrossRefGoogle Scholar
[27]Yan, D., ‘Hodge structure on symplectic manifolds’, Adv. Math. 120 (1996), 143154.CrossRefGoogle Scholar