Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T03:15:51.041Z Has data issue: false hasContentIssue false

TRIPLE COHOMOLOGY AND DIVIDED POWERS ALGEBRAS IN PRIME CHARACTERISTIC

Published online by Cambridge University Press:  09 October 2009

IOANNIS DOKAS*
Affiliation:
Department of Mathematics and Statistics, University of Cyprus, PO Box 20537, CY-1678, Nicosia, Cyprus (email: dokas@ucy.ac.cy)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper using the Quillen–Barr–Beck (co-)homology theory of universal algebras we define (co-)homology groups for commutative algebras with divided powers in prime characteristic. In particular, we determine for A a commutative 𝔽p-algebra with divided powers, the category of Beck A-modules and the group of Beck derivations. We construct the abelianization functor and we define (co-)homology. Moreover, we determine the cohomology in low dimensions and we interpret the first cohomology in terms of extensions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

References

[1]Barr, M. and Beck, J., ‘Homology and standard constructions’, in: Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics, 80 (Springer, Berlin, 1969), pp. 245335.CrossRefGoogle Scholar
[2]Cartan, H., ‘Algèbres de Eilenberg–MacLane et homotopie’, in: Seminaire Henri Cartan, 7ème année 1954–1955, 2ème édn (École Normale Supérieure, Paris, 1956).Google Scholar
[3]Fresse, B., ‘On the homotopy of simplicial algebras over an operad’, Trans. Amer. Math. Soc. 352(9) (2000), 41134141.CrossRefGoogle Scholar
[4]Loday, J.-L., ‘Cup-product for Leibniz cohomology and dual Leibniz algebras’, Math. Scand. 77 (1995), 189196.CrossRefGoogle Scholar
[5]Loday, J.-L., ‘Dialgebras’, in: Dialgebras and Related Operads, Lectures Notes in Math., 1763 (Springer, Berlin, 2001), pp. 766.CrossRefGoogle Scholar
[6]Quillen, D., ‘On the (co-)homology of commutative rings’, in: Applications of Categorical Algebra, New York, 1968, Proc. Sympos. Pure Math., Vol. XVII (American Mathematical Society, Providence, RI, 1970), pp. 6587.Google Scholar
[7]Roby, N., ‘Les algèbres à puissances divisées’, Bull. Soc. Math. France 89 (1965), 7591.Google Scholar
[8]Roby, N., ‘Construction de certaines algèbres à puissances divisées’, Bull. Soc. Math. France 96 (1968), 97113.CrossRefGoogle Scholar
[9]Soublin, J.-P., ‘Puissances divisées en caractéristique non nulle’, J. Algebra 110 (1987), 523529.CrossRefGoogle Scholar