No CrossRef data available.
Published online by Cambridge University Press: 14 May 2019
Soit $F$ un corps local non archimédien de caractéristique
${\geqslant}0$, et soit
$G=GL(N,F)$,
$N\geqslant 1$. Un élément
$\unicode[STIX]{x1D6FE}\in G$ est dit quasi régulier si le centralisateur de
$\unicode[STIX]{x1D6FE}$ dans
$M(N,F)$ est un produit d’extensions de
$F$. Soit
$G_{\text{qr}}$ l’ensemble des éléments quasi réguliers de
$G$. Pour
$\unicode[STIX]{x1D6FE}\in G_{\text{qr}}$, on note
$O_{\unicode[STIX]{x1D6FE}}$ l’intégrale orbitale ordinaire sur
$G$ associée à
$\unicode[STIX]{x1D6FE}$. On remplace ici le discriminant de Weyl
$|D_{G}|$ par un facteur de normalisation
$\unicode[STIX]{x1D702}_{G}:G_{\text{qr}}\rightarrow \mathbb{R}_{{>}0}$ permettant d’obtenir les mêmes résultats que ceux prouvés par Harish-Chandra en caractéristique nulle: pour
$f\in C_{\text{c}}^{\infty }(G)$, l’intégrale orbitale normalisée
$I^{G}(\unicode[STIX]{x1D6FE},f)=\unicode[STIX]{x1D702}_{G}^{\frac{1}{2}}(\unicode[STIX]{x1D6FE})O_{\unicode[STIX]{x1D6FE}}(f)$ est bornée sur
$G$, et pour
$\unicode[STIX]{x1D716}>0$ tel que
$N(N-1)\unicode[STIX]{x1D716}<1$, la fonction
$\unicode[STIX]{x1D702}_{G}^{-\frac{1}{2}-\unicode[STIX]{x1D716}}$ est localement intégrable sur
$G$.
Let $F$ be a non–Archimedean local field of characteristic
${\geqslant}0$, and let
$G=GL(N,F)$,
$N\geqslant 1$. An element
$\unicode[STIX]{x1D6FE}\in G$ is said to be quasi–regular if the centralizer of
$\unicode[STIX]{x1D6FE}$ in
$M(N,F)$ is a product of field extensions of
$F$. Let
$G_{\text{qr}}$ be the set of quasi–regular elements of
$G$. For
$\unicode[STIX]{x1D6FE}\in G_{\text{qr}}$, we denote by
$O_{\unicode[STIX]{x1D6FE}}$ the ordinary orbital integral on
$G$ associated with
$\unicode[STIX]{x1D6FE}$. In this paper, we replace the Weyl discriminant
$|D_{G}|$ by a normalization factor
$\unicode[STIX]{x1D702}_{G}:G_{\text{qr}}\rightarrow \mathbb{R}_{{>}0}$ which allows us to obtain the same results as proven by Harish–Chandra in characteristic zero: for
$f\in C_{\text{c}}^{\infty }(G)$, the normalized orbital integral
$I^{G}(\unicode[STIX]{x1D6FE},f)=\unicode[STIX]{x1D702}_{G}^{\frac{1}{2}}(\unicode[STIX]{x1D6FE})O_{\unicode[STIX]{x1D6FE}}(f)$ is bounded on
$G$, and for
$\unicode[STIX]{x1D716}>0$ such that
$N(N-1)\unicode[STIX]{x1D716}<1$, the function
$\unicode[STIX]{x1D702}_{G}^{-\frac{1}{2}-\unicode[STIX]{x1D716}}$ is locally integrable on
$G$.
L’auteur a bénéficié d’une subvention de l’Agence nationale de la recherche, projet ANR-13-BS01-00120-02 FERPLAY
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.