Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T10:26:45.624Z Has data issue: false hasContentIssue false

Aerobic and Cognitive Exercise (ACE) Pilot Study for Older Adults: Executive Function Improves with Cognitive Challenge While Exergaming

Published online by Cambridge University Press:  19 November 2015

Nicole Barcelos
Affiliation:
Healthy Aging & Neuropsychology Lab, Union College, Schenectady, New York
Nikita Shah
Affiliation:
Healthy Aging & Neuropsychology Lab, Union College, Schenectady, New York
Katherine Cohen
Affiliation:
Healthy Aging & Neuropsychology Lab, Union College, Schenectady, New York
Michael J. Hogan
Affiliation:
National University of Ireland, Galway
Eamon Mulkerrin
Affiliation:
Galway University Hospital, Galway
Paul J. Arciero
Affiliation:
Health & Exercise Department, Skidmore College, Saratoga Springs, New York
Brian D. Cohen
Affiliation:
Healthy Aging & Neuropsychology Lab, Union College, Schenectady, New York
Arthur F. Kramer
Affiliation:
Beckman Institute, University of Illinois at Urbana-Champaign, Illinois
Cay Anderson-Hanley*
Affiliation:
Healthy Aging & Neuropsychology Lab, Union College, Schenectady, New York
*
Correspondence and reprint requests to: Cay Anderson-Hanley, Department of Psychology, Healthy Aging & Neuropsychology Lab, Union College, 807 Union Street, Schenectady, NY 12308. E-mail: andersoc@union.edu

Abstract

Dementia cases are increasing worldwide; thus, investigators seek to identify interventions that might prevent or ameliorate cognitive decline in later life. Extensive research confirms the benefits of physical exercise for brain health, yet only a fraction of older adults exercise regularly. Interactive mental and physical exercise, as in aerobic exergaming, not only motivates, but has also been found to yield cognitive benefit above and beyond traditional exercise. This pilot study sought to investigate whether greater cognitive challenge while exergaming would yield differential outcomes in executive function and generalize to everyday functioning. Sixty-four community based older adults (mean age=82) were randomly assigned to pedal a stationary bike, while interactively engaging on-screen with: (1) a low cognitive demand task (bike tour), or (2) a high cognitive demand task (video game). Executive function (indices from Trails, Stroop and Digit Span) was assessed before and after a single-bout and 3-month exercise intervention. Significant group × time interactions were found after a single-bout (Color Trails) and after 3 months of exergaming (Stroop; among 20 adherents). Those in the high cognitive demand group performed better than those in the low cognitive dose condition. Everyday function improved across both exercise conditions. Pilot data indicate that for older adults, cognitive benefit while exergaming increased concomitantly with higher doses of interactive mental challenge. (JINS, 2015, 21, 768–779)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M.S., Moss, M.B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639.Google Scholar
Alpert, P.T., Miller, S.K., Wallmann, H., Havey, R., Cross, C., Chevalia, T., & Kodandapari, K. (2009). The effect of modified jazz dance on balance, cognition, and mood in older adults. Journal of the American Academy of Nurse Practitioners, 21(2), 108115. doi:10.1111/j.1745-7599.2008.00392.x CrossRefGoogle ScholarPubMed
Anderson-Hanley, C., Arciero, P.J., Brickman, A.M., Nimon, J.P., Okuma, N., Westen, S.C., & Zimmerman, E.A. (2012). Exergaming and older adult cognition: A cluster randomized clinical trial. American Journal of Preventive Medicine, 42(2), 109119. doi:10.1016/j.amepre.2011.10.016 CrossRefGoogle ScholarPubMed
Anderson-Hanley, C., Nimon, J.P., & Westen, S.C. (2010). Cognitive health benefits of strengthening exercise for community-dwelling older adults. Journal of Clinical and Experimental Neuropsychology, 32(9), 9961001. doi:10.1080/13803391003662702 CrossRefGoogle ScholarPubMed
Angevaren, M., Aufdemkampe, G., Verhaar, H.J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 2, CD005381. doi:10.1002/14651858.CD005381.pub2 Google Scholar
Anguera, J.A., Boccanfuso, J., Rintoul, J.L., Al-Hashimi, O., & Faraji, F. (2013). Video game training enhances cognitive control in older adults. Nature, 501, 97101.Google Scholar
Bahar-Fuchs, A., Clare, L., & Woods, B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database of Systematic Reviews, 6, CD003260. doi:1002/14651858.CD003260.pub2 Google Scholar
Baker, L.D., Frank, L.L., Foster-Schubert, K., Green, P.S., Wilkinson, C.W., McTiernan, A., & Craft, S. (2010). Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Archives of Neurology, 67(1), 7179. doi:10.1001/archneurol.2009.307 CrossRefGoogle ScholarPubMed
Ball, K., Berch, D.B., Helmers, K.F., Jobe, J.B., Leveck, M.D., & Marsiske, M. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA, 288(18), 22712281. doi:10.1001/jama.288.18.2271 Google Scholar
Ballesteros, S., Prieto, A., Mayas, J., Toril, P., Pita, C., de Leon, L.P., & Waterworth, J. (2014). Brain training with non-action video game enhances aspects of cognition in older adults: A randomized controlled trial. Frontiers in Aging Neuroscience, 6, 114. doi:10.3389/fnagi.2014.00277 CrossRefGoogle ScholarPubMed
Bamidis, P.D., Vivas, A.B., Styliadis, C., Frantzidis, C., Klados, M., Schlee, W., & Papageorgiou, S.G. (2014). A review of physical and cognitive interventions in aging. Neurosciences and Biobehavioral Reviews, 44, 206220. doi:10.1016/j.neubiorev.2014.03.019 CrossRefGoogle ScholarPubMed
Barnes, D.E., Santos-Modesitt, W., Poelke, G., Kramer, A., Castro, C., & Yaffe, K. (2013). The mental activity and exercise (MAX) trial. JAMA Internal Medicine, 173(9), 797804. doi:10.1001/jamainternmed.2013.189 Google Scholar
Basak, C., Boot, W.R., Voss, M.W., & Kramer, A.F. (2008). Can training in real- time strategy videogame attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765777. doi:10.1037/a0013494 Google Scholar
Belleville, S., Gilbert, B., Fontaine, F., Gagnon, L., Menard, E., & Gauthier, S. (2006). Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: Evidence from a cognitive intervention program. Dementia and Geriatric Cognitive Disorders, 22, 486499. doi:10.1159/000096316 Google Scholar
Best, J.R., Nagamatsu, L.S., & Liu-Ambrose, T. (2014). Improvements to executive function during exercise training predict maintenance of physical activity over the following year. Frontiers in Human Neuroscience, 8, 19. doi:10.3389/fnhum.2014.00353 Google Scholar
Blakesley, R.E., Mazumdar, S., Dew, M.A., Houck, P.R., Tang, G., Reynolds, C.F., & Butters, M.A. (2009). Comparisons of methods for multiple hypothesis testing in neuropsychological research. Neuropsychology, 23(2), 255264. doi:10.1037/a0012850 CrossRefGoogle ScholarPubMed
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H.M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & Dementia, 3(3), 186191. doi:10.1016/j.jalz.2007.04.381 CrossRefGoogle ScholarPubMed
Brum, P.S., Forlenza, O.V., & Yassuda, M.S. (2009). Cognitive training in older adults with mild cognitive impairment. Dementia & Neuropsychologica, 3(2), 124131.Google Scholar
Bunn, F., Goodman, C., Sworn, K., Rait, G., Brayne, C., Robinson, L., & Iliffe, S. (2012). Psychosocial factors that shape patient and career experiences of dementia diagnosis and treatment: A systematic review of qualitative studies. PLoS Medicine, 9(10), 112. doi:10.1371/journal.pmed.1001331 Google Scholar
Chang, Y.K., Labban, J.D., Gapin, J.I., & Etnier, J.L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87101. doi:10.1016/j.brainres.2012.02.068 Google Scholar
Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181197. doi:10.1023/B:NERV.0000009483.91468.fb Google Scholar
Colcombe, S., & Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125130. doi:10.1111/1467-9280.t01-1-01430 Google Scholar
Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E., & Kramer, A.F. (2006). Aerobic exercise training increases brain volume in aging humans. Journal of Gerontology: Medical Sciences, 61A(11), 11661170. doi:10.1093/Gerona/61.11.1166 Google Scholar
Crispim Nascimento, C.M., Pereira, J.R., de Andrade, L.P., Garuffi, M., Ayan, C., Kerr, D.S., & Stella, F. (2015). Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different BDNF Val66Met genotypes. Journal of Alzheimer’s Disease, 43(1), 8191.Google Scholar
D’Elia, L.F., Satz, P., Uchiyama, C.L., & White, T. (1996). Color Trails Test: Professional Manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Eichstaedt, K.E., Kovatch, K., & Maroff, D.A. (2013). A less conservative method to adjust for familywise error rate in neuropsychological research: The Holm’s sequential Bonferroni procedure. Neurorehabilitation, 32(3), 693696. doi:10.3233/NRE-130893 Google Scholar
Erickson, K.I., Voss, M.W., Shaurya Prakash, R., Basak, C., Szabo, A., Chaddock, L., & Kramer, A.F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 30173022. doi:10.1073/pnas.1015950108 CrossRefGoogle ScholarPubMed
Etnier, J.L., & Chang, Y.K. (2009). The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sports and Exercise Psychology, 31(4), 469483.Google Scholar
Etnier, J.L., Sibley, B.A., Pomeroy, J., & Kao, J.C. (2003). Components of Response Time as a Function of Age, Physical Activity, and Aerobic Fitness. Journal of Aging and Physical Activity, 11(3), 319332.Google Scholar
Fabre, C., Chamari, K., Mucci, P., Massé-Biron, J., & Préfaut, C. (2002). Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. International Journal of Sports Medicine, 23, 415421. doi:10.1055/s-2002-33735 CrossRefGoogle ScholarPubMed
Fissler, P., Küster, O., Schlee, W., & Kolassa, I.T. (2013). Novelty interventions to enhance broad cognitive abilities and prevent dementia: Synergistic approaches for the facilitation of positive plastic change. Progress in Brain Research, 207, 403434. doi:10.1016/B978-0-444-63327-9.00017-5 Google Scholar
Forde, E.M., & Humphreys, G.W. (2000). The role of semantic knowledge and working memory in everyday tasks. Brain and Cognition, 44(2), 253279. doi:10.1006/brcg.2000.1229 Google Scholar
Freitas, S., Simões, M.R., Alves, L., & Santana, I. (2013). Montreal cognitive assessment: Validation study for mild cognitive impairment and Alzheimer’s disease. Alzheimer Disease & Associated Disorders, 21(1), 3743. doi:10.1097/WAD.0b013e3182420bfe Google Scholar
Gates, N., Fiatarone Singh, M.A., Sachdev, P.S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: A meta-analysis of randomized controlled trials. American Journal of Geriatric Psychiatry, 21(11), 10861098. doi:10.1016/j.jagp.2013.02.018 Google Scholar
Gates, N., Sachdev, P.S., Singh, M.A., & Valenzuela, M. (2011). Cognitive and memory training in adults at risk of dementia: A systematic review. BMC Geriatrics, 11, 114.Google Scholar
Geda, Y.E., Roberts, R.O., Knopman, D.S., Christianson, T.J., Pankratz, V.S., Ivnik, R.J., & Rocca, W.A. (2010). Physical exercise, aging, and mild cognitive impairment. Archives of Neurology, 67(1), 8086. doi:10.1001/archneurol.2009.297 Google Scholar
Green, C.S., & Bavelier, D. (2008). Exercising your brain: A review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692701. doi:10.1037/a0014345 CrossRefGoogle Scholar
Guiney, H., Lucas, S.L., Cotter, J.D., & Machado, L. (2015). Evidence cerebral blood-flow regulation mediates exercise-cognition links in healthy young adults. Neuropsychology, 29(1), 19. doi:10.1037/neu0000124 Google Scholar
Hadi Hosseini, S.M., Jramer, J.H., & Kesler, S.R. (2014). Neural correlates of cognitive intervention in persons at risk of developing Alzheimer’s disease. Frontiers in Aging Neuroscience, 6, 19. doi:10.3389/fnagi.2014.00231 Google Scholar
Hall, C.B., Lipton, R.B., Sliwinski, M., Katz, M.J., Derby, C.A., & Verghese, J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73(5), 356361. doi:10.1212/WNL.0b013e3181b04ae3 Google Scholar
Hannay, J.H., & Lezak, M.D. (2004). The neuropsychological examination: Interpretation. In M.D. Lezak, D.B. Howieson & D.W. Loring (Eds.), Neuropsychological assessment (4th ed., pp. 133156). New York, NY: Oxford University Press.Google Scholar
Hess, N.C., Dieberg, G., McFarlane, J.R., & Smart, N.A. (2014). The effect of exercise intervention on cognitive performance in persons at risk of, or with, dementia: A systematic review and meta-analysis. Healthy Aging Research, 3(3), 110. doi:10.12715/har.2014.3.3 Google Scholar
Heyn, P., Abreu, B.C., & Ottenbacher, K.J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 85, 16941704. doi:10.1016/j.apmr.2004.03.019 Google Scholar
Hillman, C.H., Belopolsky, A.V., Snook, E.M., Kramer, A.F., & McAuley, E. (2004). Physical activity and executive control: Implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75, 176185. doi:10.1080/02701367.2004.10609149 Google Scholar
Hillman, C.H., Motl, R.W., Pontifex, M.B., Posthuma, D., Stubbe, J.H., Boomsma, D.I., & de Geus, E.J. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25, 678687.Google Scholar
Hӧtting, K., & Rӧder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience and Biobehavioral Reviews, 37, 22432257. doi:10.1016/j.neubiorev.2013.04.005 Google Scholar
Jean, L., Bergeron, M.E., Thivierge, S., & Simard, M. (2010). Cognitive intervention programs for individuals with mild cognitive impairment: Systematic review of the literature. American Journal of Geriatric Psychiatry, 18, 281296.Google Scholar
Karr, J.E., Areshenkoff, C.N., Rast, P., & Garcia-Barrera, M.A. (2014). An empirical comparison of the therapeutic benefits of physical exercise and cognitive training on the executive functions of older adults: A meta-analysis of controlled trials. Neuropsychology, 28, 829845.Google Scholar
Klusmann, V., Evers, A., Schwarzer, R., & Heuser, I. (2011). A brief questionnaire on metacognition: Psychometric properties. Aging & Metal Health, 15(8), 10521062.Google Scholar
Knaepen, K., Goekint, M., Heyman, E.M., & Meeusen, R. (2010). Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Medicine, 40(9), 765801. doi:10.2165/11534530-000000000-00000 Google Scholar
Kraft, E. (2012). Cognitive function, physical activity, and aging: Possible biological links and implications for multimodal interventions. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology, and Cognition, 19, 248263. doi:10.1080/13825585.2011.645010 Google Scholar
Kravitz, R.L., Hays, R.D., Sherbourne, C.D., DiMatteo, M.R., Rogers, W.H., Ordway, L., & Greenfield, S. (1993). Recall of recommendations and adherence to advice among patients with chronic medical conditions. Archives of Internal Medicine, 153(16), 18691878.Google Scholar
Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology of Aging, 15(1), 126147. doi:10.1037/0882-7974.15.1.126 Google Scholar
Lam, M., Eng, G.K., Rapisarda, A., Subramaniam, M., Kraus, M., Keefe, R.S., & Collinson, S.L. (2013). Formulation of the age-education index: Measuring age and education effects in neuropsychological performance. Psychological Assessment, 25(1), 6170. doi:10.1037/a0030548 Google Scholar
Lansbergen, M.M., Kenemans, J.L., & van Engeland, H. (2007). Stroop interference and attention-deficit/hyperactivity disorder: A review and meta-analysis. Neuropsychology, 21(2), 251262. doi:10.1037/0894-4105.21.2.251 CrossRefGoogle ScholarPubMed
Lautenschlager, N., Cox, K., Flicker, L., Foster, J.K., van Bockxmeer, F.M., Xiao, J., & Almeida, O.P. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. Journal of the American Medical Association, 300(9), 10271037. doi:10.1001/jama.300.9.1027 Google Scholar
Leckie, R.L., Oberlin, L.E., Voss, M.E., Prakash, R.S., Szabo-Reed, A., Chaddock-Heyman, L., & Erickson, K.I. (2014). BDNF mediates improves in executive function following a 1-year exercise intervention. Frontiers in Human Neuroscience, 8(985), 111. doi:10.3389/fnhum.2014.00985 CrossRefGoogle ScholarPubMed
Linde, K., & Alfermann, D. (2014). Single versus combined cognitive and physical activity effects on fluid cognitive abilities of healthy older adults: A 4-month randomized controlled trial with follow-up. Journal of Aging and Physical Activity, 22(3), 302313. doi:10.1123/japa.2012-0149 Google Scholar
Loprinzi, P.D., Herod, S.M., Cardinal, B.J., & Noakes, T.D. (2013). Physical activity and the brain: A review of this dynamic, bi-directional relationship. Brain Research, 1539, 95104.Google Scholar
Maclin, E.L., Mathewson, K.E., Low, K.A., Boot, W.R., Kramer, A.F., Fabiani, M., & Gratton, G. (2011). Learning to multitask: Effects of video game practice on electrophysiological indices of attention and resource allocation. Psychophysiology, 48(9), 11731183. doi:10.1111/j.1469-8986.2011.01189.x CrossRefGoogle ScholarPubMed
Maillot, P., Perrot, A., & Hartley, A. (2012). Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychology and Aging, 27(3), 589600. doi:10.1037/a0026268 CrossRefGoogle ScholarPubMed
Mathewson, K.E., Basak, C., Maclin, E.L., Low, K.A., Boot, W.R., Kramer, A.F., & Gratton, G. (2012). Different slopes for different folks: Alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks. Psychophysiology, 49(12), 15581570. doi:10.1111/j.1469-8986.2012.01474.x Google Scholar
McAuley, E., Szabo, A.N., Mailey, E.L., Erickson, E.I., Voss, M., White, S.M., & Kramer, A.F. (2011). Non-exercise estimated cardiorespiratory fitness: Associations with brain structure, cognition, and memory complaints in older adults. Mental Health and Physical Activity, 4(1), 511. doi:10.1016/j.mhpa.2011.01.001 Google Scholar
McDougall, S., & House, B. (2012). Brain training in older adults: Evidence of transfer to memory span performance and pseudo-Matthew effects. Aging, Neuropsychology, and Cognition, 19(1), 195221.Google Scholar
Merom, D., Cumming, R., Mathieu, E., Anstey, K.J., Rissel, C., Simpson, J.M., & Lord, S.R. (2013). Can social dancing prevent falls in older adults? A protocol of the Dance, Aging, Cognition, Economics (DAnCE) fall prevention randomised controlled trial. BMC Public Health, 13, 477. doi:10.1186/1471-2458-13-477 Google Scholar
Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695699. doi: 10.1111/j.1532-5415.2005.53221.x Google Scholar
O’Leary, K.C., Pontifex, M.B., Scudder, M.R., Brown, M.L., & Hillman, C.H. (2011). The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clinical Neurophysiology, 122(8), 15181525. doi:10.1016/j.clinph.2011.01.049 Google Scholar
Oswald, W., Gunzelmann, T., Rupprecht, R., & Hagen, B. (2006). Differential effects of single versus combined cognitive and physical training with older adults: The SimA study in a 5-year perspective. European Journal Ageing, 3(4), 179192. doi:10.1007/s10433-006-0035-z CrossRefGoogle Scholar
Prakash, R.S., Voss, M.W., Erickson, K.I., & Kramer, A.F. (2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769797. doi:10.1146/annurev-psych-010814-015249 CrossRefGoogle ScholarPubMed
Rahe, J., Petrelli, A., Kaesberg, S., Fink, G.R., Kessler, J., & Kalbe, E. (2015). Effects of cognitive training with additional physical activity compared to pure cognitive training in healthy older adults. Clinical Interventions in Aging, 10, 297310. doi:10.2147/CIA.S74071 Google Scholar
Read, J.L., & Shortell, S.M. (2011). Interactive games to promote behavior change in prevention and treatment. Journal of the American Medical Association, 305(16), 17041705. doi:10.1001/jama.2011.408 Google Scholar
Roig, M., Skriver, K., Lundbye-Jensen, J., Kiens, B., & Nielsen, J. (2012). A single bout of exercise improves motor memory. Plos One, 7(9), e44594.Google Scholar
Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J.W., Kiens, B., &Nielsen, J.B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 4658. doi:10.1016/j.nlm.2014.08.004 Google Scholar
Shatil, E. (2013). Does combined training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5, 127. doi:10.3389/fnagi.2013.00008 Google Scholar
Sluijs, E.M., Kok, G.J., & van der Zee, J. (1993). Correlates of exercise compliance in physical therapy. Physical Therapy, 73(11), 771786.CrossRefGoogle ScholarPubMed
Smith, A.E., Goldsworthy, M.R., Garside, T., Wood, F.M., & Ridding, M.C. (2014). The influence of a single bout of aerobic exercise on short-interval intracortical excitability. Experimental Brain Research, 232(6), 18751882. doi:10.1007/s00221-014-3879-z Google Scholar
Smith, G.E., Housen, P., Yaffe, K., Ruff, R., Kennison, R.F., Mahncke, H.W., & Zelinski, E.M. (2009). A cognitive training program based on principles of brain plasticity: Results from the Improvement in memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594603. doi:10.1111/j.1532-5415.2008.02167.x Google Scholar
Smith, J.C., Nielson, K.A., Antuono, P., Lyons, J.A., Hanson, R.J., Butts, A.M., & Verber, M.D. (2013). Semantic memory functional MRI and cognitive function after exercise intervention in mild cognitive impairment. Journal of Alzheimer’s disease, 37(1), 197215. doi:10.3233/JAD-130467 Google Scholar
Smith, J.C., Nielson, K.A., Woodard, J.L., Seidenberg, M., & Rao, S.M. (2013). Physical activity and brain function in older adults at increased risk for Alzheimer’s disease. Brain Sciences, 3(1), 5483. doi:10.3390/brainsci3010054 Google Scholar
Stern, Y., Blumen, H.M., Rich, L.W., Richards, A., Herzberg, G., & Gopher, D. (2011). Space fortress game training and executive control in older adults: A pilot intervention. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology, and Cognition, 18, 653677. doi:10.1080/13825585.2011.613450 CrossRefGoogle ScholarPubMed
Strauss, E., Sherman, E.M., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms and commentary (3rd ed.). New York, NY: Oxford University Press.Google Scholar
Tabachnick, B.G., & Fidell, L.S. (2001). Using multivariate statistics (4th Ed.). Boston, MA: Allyn & Bacon.Google Scholar
Theill, N., Schumacher, V., Adelsberger, R., Martin, M., & Jäncke, L.J. (2013). Effects of simultaneously performed cognitive and physical training in older adults. BMC Neuroscience, 14, 103. doi:10.1186/1471-2202-14-103 CrossRefGoogle ScholarPubMed
Toril, P., Reales, J.M., & Ballesteros, S. (2014). Video game training enhances cognition of older adults: A meta-analytic study. Psychology and Aging, 29(3), 706716. doi:10.1037/a0037507 Google Scholar
Valenzuela, M., & Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. American Journal of Geriatric Psychiatry, 17, 179187.Google Scholar
van der Elst, W., van Boxtel, M.P., van Breukelen, G.J., & Jolles, J. (2006). The Stroop color-word test: Influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment, 13(1), 6279. doi:10.1177/1073191105283427 CrossRefGoogle ScholarPubMed
Vogt, T., Schneider, S., Brümmer, V., & Strüder, H. (2010). Frontal EEG asymmetry: The effects of sustained walking in the elderly. Neuroscience Letters, 485(2), 134137. doi:10.1016/j.neulet.2010.09.001 Google Scholar
Yerokhin, V., Anderson-Hanley, C., Hogan, M.J., Dunnam, M., Huber, D., Osborne, S., & Shulan, M. (2012). Neuropsychological and neurophysiological effects of strengthening exercise for early dementia: A pilot study. Aging, Neuropsychology, and Cognition, 19(3), 380401. doi:10.1080/13825585.2011.628378 Google Scholar
Supplementary material: PDF

Barcelos supplementary material

Figures S1-S2

Download Barcelos supplementary material(PDF)
PDF 527.9 KB
Supplementary material: File

Barcelos supplementary material

Table S1

Download Barcelos supplementary material(File)
File 41.1 KB