Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-21T10:18:14.308Z Has data issue: false hasContentIssue false

The Alerting and Orienting Systems of Attention Are Modified by Cannabis Dependence

Published online by Cambridge University Press:  15 July 2021

Ivett E. Ortega-Mora
Affiliation:
Grupo de Neurociencias: Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Av. Universidad 3004, Col. UNAM, C.P. 04510, Universidad Nacional Autónoma de México (UNAM), Mexico
Ulises Caballero-Sánchez
Affiliation:
Grupo de Neurociencias: Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Av. Universidad 3004, Col. UNAM, C.P. 04510, Universidad Nacional Autónoma de México (UNAM), Mexico
Talía V. Román-López
Affiliation:
Grupo de Neurociencias: Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Av. Universidad 3004, Col. UNAM, C.P. 04510, Universidad Nacional Autónoma de México (UNAM), Mexico
Cintia B. Rosas-Escobar
Affiliation:
Grupo de Neurociencias: Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Av. Universidad 3004, Col. UNAM, C.P. 04510, Universidad Nacional Autónoma de México (UNAM), Mexico
Mónica Méndez-Díaz
Affiliation:
Lab. Cannabinoides, Depto. Fisiología, Fac. Medicina, UNAM, Apdo. Postal 70-250, México, D. F. 04510, México
Oscar E. Prospéro-García
Affiliation:
Lab. Cannabinoides, Depto. Fisiología, Fac. Medicina, UNAM, Apdo. Postal 70-250, México, D. F. 04510, México
Alejandra E. Ruiz-Contreras*
Affiliation:
Grupo de Neurociencias: Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Av. Universidad 3004, Col. UNAM, C.P. 04510, Universidad Nacional Autónoma de México (UNAM), Mexico
*
*Correspondence and reprint requests to: Alejandra E. Ruiz-Contreras, Av. Universidad 3004, Col. Copilco-Universidad, Del. Coyoacan, C.P. 04510, CDMX, Mexico. Tel: +52 5556222568. E-mail: aleruiz@unam.mx

Abstract

Attention allows us to select relevant information from the background. Although several studies have described that cannabis use induces deleterious effects on attention, it remains unclear if cannabis dependence affects the attention network systems differently.

Objectives:

To evaluate whether customary consumption of cannabis or cannabis dependence impacts the alerting, orienting, and executive control systems in young adults; to find out whether it is related to tobacco or alcohol dependence and if cannabis use characteristics are associated with the attention network systems.

Method:

One-hundred and fifty-four healthy adults and 102 cannabis users performed the Attention Network Test (ANT) to evaluate the alerting, orienting, and executive control systems.

Results:

Cannabis use enhanced the alerting system but decreased the orienting system. Moreover, those effects seem to be associated with cannabis dependence. Out of all the cannabis-using variables, only the age of onset of cannabis use significantly predicted the efficiency of the orienting and executive control systems.

Conclusion:

Cannabis dependence favors tonic alertness but reduces selective attention ability; earlier use of cannabis worsens the efficiency of selective attention and resolution of conflicts.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullaev, Y., Posner, M.I., Nunnally, R., & Dishion, T.J. (2010). Functional MRI evidence for inefficient attentional control in adolescent chronic cannabis abuse. Behavioural Brain Research, 215(1), 4557. doi: 10.1016/j.bbr.2010.06.023 CrossRefGoogle ScholarPubMed
Agrawal, A., Lynskey, M.T., Hinrichs, A., Richard, G., Saccone, S.F., Krueger, R., … Bierut, L.J. (2011). A genomewide association study of DSM-IV Cannabis dependence corresponding. Addiction Biology, 16(3), 514518. doi: 10.1111/j.1369–1600.2010.00255.x CrossRefGoogle Scholar
Amancio-Belmont, O., Romano-López, A., Ruiz-Contreras, A.E., Méndez-Díaz, M., & Prospéro-García, O. (2017). From adolescent to elder rats: Motivation for palatable food and cannabinoids receptors. Developmental Neurobiology, 77(8), 917927. doi: 10.1002/dneu.22472 CrossRefGoogle ScholarPubMed
Barrett, S.P., Darredeau, C., & Pihl, R.O. (2006). Patterns of simultaneous polysubstance use in drug using university students. Human Psychopharmacology, 21(4), 255263. doi: 10.1002/hup.766 CrossRefGoogle ScholarPubMed
Bellis, M.D.D., Wang, L., Bergman, S.R., Yaxley, R.H., Hooper, S.R., & Huttel, S.A. (2013). Neural mechanisms of risky decision-making and reward response in adolescent onset cannabis use disorder. Drug Alcohol Dependence, 133(1), 134145. doi: 10.1016/j.drugalcdep.2013.05.020 CrossRefGoogle ScholarPubMed
Bocker, K.B.E., Gerritsen, J., Hunault, C.C., Kruidenier, M., Mensinga, T.T., & Kenemans, J.L. (2010). Cannabis with high Δ9-THC contents affects perception and visual selective attention acutely: An event-related potential study. Pharmacology Biochemistry and Behavior, 96(1), 6774. doi: 10.1016/j.pbb.2010.04.008 CrossRefGoogle Scholar
Bonnet, U., & Preuss, U. (2017). The cannabis withdrawal syndrome: Current insights. Substance Abuse and Rehabilitation, 8(10), 937. doi: 10.2147/SAR.S109576 CrossRefGoogle ScholarPubMed
Ceccarini, J., Kuepper, R., Kemels, D., Van Os, J., Henquet, C., & Van Laere, K. (2015). [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addiction Biology, 20(2), 357367. doi: 10.1111/adb.12116 CrossRefGoogle ScholarPubMed
Cengel, H.Y., Bozkurt, M., Evren, C., Umut, G., Keskinkilic, C., & Agachanli, R. (2018). Evaluation of cognitive functions in individuals with synthetic cannabinoid use disorder and comparison to individuals with cannabis use disorder. Psychiatry Research, 262, 4654. doi: 10.1016/j.psychres.2018.01.046 CrossRefGoogle ScholarPubMed
Chang, L., Yakupov, R., Cloak, C., & Ernst, T. (2006). Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain, 129(5), 10961112. doi: 10.1093/brain/awl064 CrossRefGoogle ScholarPubMed
Chung, T., Cornelius, J., Clark, D., & Martin, C. (2018). Greater prevalence of proposed ICD-11 alcohol and cannabis dependence compared to ICD-10, DSM-IV and DSM-5 in treated adolescents. Alcohol Clinical Experimental Research, 41(9), 15841592. doi: 10.1111/acer.13441.Greater CrossRefGoogle Scholar
Colizzi, M., & Bhattacharyya, S. (2018). Neurocognitive effects of cannabis: Lessons learned from human experimental studies. Progress in Brain Research, 242, 179216. doi: 10.1016/bs.pbr.2018.08.010 CrossRefGoogle ScholarPubMed
Cook, R.D., & Weisberg, S. (1984). Residuals and influence in regression. Journal of the Royal Statistical Society Series A (General), 147(1), 108. doi: 10.2307/2981746 Google Scholar
Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215. doi: 10.1038/nrn755 CrossRefGoogle Scholar
Crawley, M.J. (2012). The R Book. Auction Theory (2nd ed.). London, UK: Elsevier.Google Scholar
Epstein, K.A., & Kumra, S. (2014). Executive attention impairment in adolescents with schizophrenia who have used cannabis. Schizophrenia Research, 157(1–3), 4854. doi: 10.1016/j.schres.2014.04.035 CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B.D., Sommer, T., Raz, A., & Posner, M.I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340347. doi: 10.1162/089892902317361886 CrossRefGoogle ScholarPubMed
Filbey, F.M., McQueeny, T., DeWitt, S.J., & Mishra, V. (2015). Preliminary findings demonstrating latent effects of early adolescent marijuana use onset on cortical architecture. Developmental Cognitive Neuroscience, 16, 1622. doi: 10.1016/j.dcn.2015.10.001 CrossRefGoogle ScholarPubMed
Filbey, F.M., McQueeny, T., Kadamangudi, S., Bice, C., & Ketcherside, A. (2015). Combined effects of marijuana and nicotine on memory performance and hippocampal volume. Behavioural Brain Research, 293(3), 4653. doi: 10.1016/j.bbr.2015.07.029 CrossRefGoogle ScholarPubMed
Fu, J., Xu, P., Zhao, L., & Yu, G. (2018). Impaired orienting in youth with internet addiction: evidence from the attention network task (ANT). Psychiatry Research, 264, 5457. doi: 10.1016/j.psychres.2017.11.071 CrossRefGoogle Scholar
Gogtay, N., & Thompson, P.M. (2010). Mapping gray matter development: Implications for typical development and vulnerability to psychopathology. Brain and Cognition, 72(1), 615. doi: 10.1016/j.bandc.2009.08.009 CrossRefGoogle ScholarPubMed
Gonzalez, R., Rippeth, J.D., Carey, C.L., Heaton, R.K., Moore, D.J., Schweinsburg, B.C., … Grant, I. (2004). Neurocognitive performance of methamphetamine users discordant for history of marijuana exposure. Drug and Alcohol Dependence, 76(2), 181190. doi: 10.1016/j.drugalcdep.2004.04.014 CrossRefGoogle ScholarPubMed
Gouzoulis-Mayfrank, E. (2000). Impaired cognitive performance in drug free users of recreational ecstasy (MDMA). Journal of Neurology, Neurosurgery & Psychiatry, 68(6), 719725. doi: 10.1136/jnnp.68.6.719 CrossRefGoogle Scholar
Han, S.W. (2017). Search for capacity-limited and super-capacity search. Experimental Psychology, 64(3), 149158. doi: 10.1027/1618–3169/a000356 CrossRefGoogle ScholarPubMed
Hanson, K.L., Winward, J.L., Schweinsburg, A.D., Medina, K.L., Brown, S.A., & Tapert, S.F. (2010). Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence. Addictive Behaviors, 35(11), 970976. doi: 10.1016/j.addbeh.2010.06.012 CrossRefGoogle ScholarPubMed
Hirvonen, J., Goodwin, R.S., Li, C.-T., Terry, G.E., Zoghbi, S.S., Morse, C., … Innis, R.B. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Molecular Psychiatry, 17(6), 642649. doi: 10.1038/mp.2011.82 CrossRefGoogle ScholarPubMed
Hooper, S.R., Woolley, D., & De Bellis, M.D. (2014). Intellectual, neurocognitive, and academic achievement in abstinent adolescents with cannabis use disorder. Psychopharmacology, 231(8), 14671477. doi: 10.1007/s00213–014–3463-z CrossRefGoogle ScholarPubMed
Indlekofer, F., Piechatzek, M., Daamen, M., Glasmacher, C., Lieb, R., Pfister, H., … Schütz, C.G. (2009). Reduced memory and attention performance in a population-based sample of young adults with a moderate lifetime use of cannabis, ecstasy and alcohol. Journal of Psychopharmacology, 23(5), 495509. doi: 10.1177/0269881108091076 CrossRefGoogle Scholar
Jacobus, J., McQueeny, T., Bava, S., Schweinsburg, B.C., Frank, L.R., Yang, T.T., & Tapert, S.F. (2009). White matter integrity in adolescents with histories of marijuana use and binge drinking. Neurotoxicology and Teratology, 31(6), 349355. doi: 10.1016/j.ntt.2009.07.006 CrossRefGoogle ScholarPubMed
Jha, A.P., Fabian, S.A., & Aguirre, G.K. (2004). The role of prefrontal cortex in resolving distractor interference. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 517527.CrossRefGoogle ScholarPubMed
Jurado, S., Villegas, E., Méndez, L., Rodríguez, F., Loperena, V., & Varela, R. (1998). La estandarización del inventario de depresión de beck para los residentes de la ciudad de México. Salude Mental, 21(3), 2631.Google Scholar
Kelly, S.M., Gryczynski, J., Mitchell, S.G., Kirk, A., O’Grady, K.E., & Schwartz, R.P. (2014). Concordance between DSM-5 and DSM-IV nicotine, alcohol, and cannabis use disorder diagnoses among pediatric patients. Drug and Alcohol Dependence, 140(1), 213216. doi: 10.1016/j.drugalcdep.2014.03.034 CrossRefGoogle ScholarPubMed
Krzyzanowski, D.J., & Purdon, S.E. (2019). Duration of abstinence from cannabis is positively associated with verbal learning performance: A systematic review and meta-analysis. Neuropsychology, 34(3), 359372. doi: 10.1037/neu0000615 CrossRefGoogle ScholarPubMed
Lannoy, S., Heeren, A., Moyaerts, N., Bruneau, N., Evrard, S., Billieux, J., & Maurage, P. (2017). Differential impairments across attentional networks in binge drinking. Psychopharmacology, 234(7), 10591068. doi: 10.1007/s00213–017–4538–4 CrossRefGoogle ScholarPubMed
Lee, D., Vandrey, R., Mendu, D.R., Anizan, S., Milman, G., Murray, J.A., … Huestis, M.A. (2013). Oral fluid cannabinoids in chronic cannabis smokers during oral δ9-tetrahydrocannabinol therapy and smoked cannabis challenge. Clinical Chemistry, 59(12), 17701779. doi: 10.1373/clinchem.2013.207316 CrossRefGoogle ScholarPubMed
Long, L.E., Lind, J., Webster, M., & Weickert, C.S. (2012). Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neuroscience, 13(1), 1. doi: 10.1186/1471–2202–13–87 CrossRefGoogle ScholarPubMed
Lorenzetti, V., Chye, Y., Silva, P., Solowij, N., & Roberts, C.A. (2019). Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. European Archives of Psychiatry and Clinical Neuroscience, 269(1), 5971. doi: 10.1007/s00406–019–00979–1 CrossRefGoogle ScholarPubMed
Lundwall, R.A., Dannemiller, J.L., & Goldsmith, H.H. (2017). Genetic associations with reflexive visual attention in infancy and childhood. Developmental Science, 20(3), e12371. doi: 10.1111/desc.12371 CrossRefGoogle ScholarPubMed
Maurage, P., de Timary, P., Billieux, J., Collignon, M., & Heeren, A. (2014). Attentional alterations in alcohol dependence are underpinned by specific executive control deficits. Alcoholism: Clinical and Experimental Research, 38(7), 21052112. doi: 10.1111/acer.12444 CrossRefGoogle ScholarPubMed
Medina, K.L., Hanson, K.L., Schweinsburg, A.D., Cohen-Zion, M., Nagel, B.J., & Tapert, S.F. (2007). Neuropsychological functioning in adolescent marijuana users: Subtle deficits detectable after a month of abstinence. Journal of the International Neuropsychological Society, 13(05), 807820. doi: 10.1017/S1355617707071032 CrossRefGoogle ScholarPubMed
Medina, K.L., McQueeny, T., Nagel, B.J., Hanson, K.L., Schweinsburg, A.D., & Tapert, S.F. (2008). Prefrontal cortex volumes in adolescents with alcohol use disorders: Unique gender effects. Alcoholism: Clinical and Experimental Research, 32(3), 386394. doi: 10.1111/j.1530–0277.2007.00602.x CrossRefGoogle ScholarPubMed
Medina, K.L., Schweinsburg, A.D., Cohen-Zion, M., Nagel, B.J., & Tapert, S.F. (2007). Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicology and Teratology, 29(1), 141152. doi: 10.1016/j.ntt.2006.10.010 CrossRefGoogle ScholarPubMed
Meier, M.H., Caspi, A., Ambler, A., Harrington, H., Houts, R., Keefe, R.S.E., … Moffitt, T.E. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. Proceedings of the National Academy of Sciences, 109(40), E2657E2664. doi: 10.1073/pnas.1206820109 CrossRefGoogle ScholarPubMed
Mutreja, R., Craig, C., & O’Boyle, M.W. (2016). Attentional network deficits in children with autism spectrum disorder. Developmental Neurorehabilitation, 19(6), 389397. doi: 10.3109/17518423.2015.1017663 CrossRefGoogle ScholarPubMed
Nixon, S.J. (1999). Neurocognitive performance in alcoholics: Is polysubstance abuse important? Psychological Science, 10(3), 181185. doi: 10.1111/1467–9280.00130 CrossRefGoogle Scholar
Noudoost, B., Chang, M.H., Steinmetz, N.A., & Moore, T. (2010). Top-down control of visual attention. Current Opinion in Neurobiology, 20(2), 183190. doi: 10.1016/j.conb.2010.02.003 CrossRefGoogle ScholarPubMed
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. doi: 10.1016/0028–3932(71)90067–4 CrossRefGoogle ScholarPubMed
O’Neill, A., Bachi, B., & Bhattacharyya, S. (2020). Attentional bias towards cannabis cues in cannabis users: A systematic review and meta-analysis. Drug and Alcohol Dependence, 206, 107719. doi: 10.1016/j.drugalcdep.2019.107719 CrossRefGoogle ScholarPubMed
Orellana, G., Slachevsky, A., & Peña, M. (2012). Executive attention impairment in first-episode schizophrenia. BMC Psychiatry, 12(1), 154. doi: 10.1186/1471–244X-12–154 CrossRefGoogle ScholarPubMed
Pacheco-Unguetti, A.P., Acosta, A., Callejas, A., & Lupiáñez, J. (2010). Attention and anxiety: Different attentional functioning under state and trait anxiety. Psychological Science, 21(2), 298304. doi: 10.1177/0956797609359624 CrossRefGoogle ScholarPubMed
Paneri, S., & Gregoriou, G.G. (2017). Top-down control of visual attention by the prefrontal cortex. Functional specialization and long-range interactions. Frontiers in Neuroscience, 11, 116. doi: 10.3389/fnins.2017.00545 CrossRefGoogle ScholarPubMed
Petersen, S.E., & Posner, M.I. (2012). The attention system of the human brain: 20 Years after. Annual Review of Neuroscience, 35(1), 7389. doi: 10.1146/annurev-neuro-062111–150525 CrossRefGoogle Scholar
Petersen, S.E., Posner, M.I., & Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi: 10.1146/annurev.ne.13.030190.000325 Google Scholar
Pope, H.G., Gruber, A.J., Hudson, J.I., Huestis, M.A., & Yurgelun-Todd, D. (2001). Neuropsychological performance in long-term cannabis users. Archives General Psychiatry, 58, 909915.CrossRefGoogle ScholarPubMed
Posner, M.I. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129, 193199. doi: 10.1196/annals.1417.011 CrossRefGoogle ScholarPubMed
Posner, M.I. (2014). Orienting of attention: Then and now. Quarterly Journal of Experimental Psychology, 67(10), 112. doi: 10.1038/nature13314.A Google Scholar
Posner, M.I., & Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 2542. doi: 10.1146/annurev.ne.13.030190.000325 CrossRefGoogle ScholarPubMed
Prini, P., Zamberletti, E., Manenti, C., Gabaglio, M., Parolaro, D., & Rubino, T. (2020). Neurobiological mechanisms underlying cannabis-induced memory impairment. European Neuropsychopharmacology, 36, 181190. doi: 10.1016/j.euroneuro.2020.02.002 CrossRefGoogle ScholarPubMed
Rangel-Pacheco, A., Lew, B.J., Schantell, M.D., Frenzel, M.R., Eastman, J.A., Wiesman, A.I., & Wilson, T.W. (2020). Altered fronto-occipital connectivity during visual selective attention in regular cannabis users. Psychopharmacology. Advance online publication. doi: 10.1007/s00213–020–05717–3 Google ScholarPubMed
Raven, J., Raven, J.C., & Court, J.H. (1998). Manual for Raven’s Progressive Matrices and Vocabulary Scales, Section 1: General Overview. Oxford, England and San Antonio, TX: Oxford Psychologists Press and The Psychological Corporation.Google Scholar
Rocchetti, M., Crescini, A., Borgwardt, S., Caverzasi, E., Politi, P., Atakan, Z., & Fusar-Poli, P. (2013). Is cannabis neurotoxic for the healthy brain? A meta-analytical review of structural brain alterations in non-psychotic users. Psychiatry and Clinical Neurosciences, 67(7), 483492. doi: 10.1111/pcn.12085 CrossRefGoogle Scholar
Schoeler, T., Kambeitz, J., Behlke, I., Murray, R., & Bhattacharyya, S. (2016). The effects of cannabis on memory function in users with and without a psychotic disorder: Findings from a combined meta-analysis. Psychological Medicine, 46(1), 177188. doi: 10.1017/S0033291715001646 CrossRefGoogle ScholarPubMed
Scott, J.C., Slomiak, S.T., Jones, J.D., Rosen, A.F.G., Moore, T.M., & Gur, R.C. (2018). Association of cannabis with cognitive functioning in adolescents and young adults a systematic review and meta-analysis. JAMA Psychiatry, 75(6), 585595. doi: 10.1001/jamapsychiatry.2018.0335 CrossRefGoogle Scholar
Solowij, N., Jones, K.A., Rozman, M.E., Davis, S.M., Ciarrochi, J., Heaven, P.C.L., … Yücel, M. (2011). Verbal learning and memory in adolescent cannabis users, alcohol users and non-users. Psychopharmacology, 216(1), 131144. doi: 10.1007/s00213–011–2203-x CrossRefGoogle ScholarPubMed
Solowij, N., Michie, P.T., & Fox, A.M. (1991). Effects of long-term cannabis use on selective attention: An event-related potential study. Pharmacology Biochemistry and Behavior, 40(3), 683688. doi: 10.1016/0091–3057(91)90382-C CrossRefGoogle Scholar
Solowij, N., Stephens, R.S., Roffman, R.A., Kadden, R., Miller, M., Christiansen, K., … Vendetti, J. (2002). Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA, 287(9), 11231132.CrossRefGoogle ScholarPubMed
Stevens, C., & Bavelier, D. (2012). The role of selective attention on academic foundations: A cognitive neuroscience perspective. Developmental Cognitive Neuroscience, 2(Suppl. 1), S30S48. doi: 10.1016/j.dcn.2011.11.001 CrossRefGoogle ScholarPubMed
Urbanek, C., Neuhaus, A.H.M., Opgen-Rhein, C., Strathmann, S., Wieseke, N., Schaub, R., … Dettling, M. (2009). Attention network test (ANT) reveals gender-specific alterations of executive function in schizophrenia. Psychiatry Research, 168(2), 102109. doi: 10.1016/j.psychres.2008.04.006 CrossRefGoogle Scholar
Valdez, P. (2019). Circadian rhythms in attention. Yale Journal of Biology and Medicine, 92(1), 8192.Google ScholarPubMed
Vilar-López, R., Takagi, M., Lubman, D.I., Cotton, S.M., Bora, E., Verdejo-García, A., & Yücel, M. (2013). The effects of inhalant misuse on attentional networks. Developmental Neuropsychology, 38(2), 126136. doi: 10.1080/87565641.2012.745547 CrossRefGoogle ScholarPubMed
Vujanovic, A.A., Wardle, M.C., Liu, S., Dias, N.R., & Lane, S.D. (2016). Attentional bias in adults with cannabis use disorders. Journal of Addictive Diseases, 35(2), 144153. doi: 10.1080/10550887.2015.1116354 CrossRefGoogle ScholarPubMed
Yanes, J.A., Riedel, M.C., Ray, K.L., Kirkland, A.E., Bird, R.T., Boeving, E.R., … Sutherland, M.T. (2018). Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing. Journal of Psychopharmacology, 32(3), 283295. doi: 10.1177/0269881117744995 CrossRefGoogle ScholarPubMed
Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., & Smith, G.M. (2009). Mixed effects models and extensions in ecology with R. Smart Society: A Sociological Perspective on Smart Living. New York, NY: Springer.Google Scholar
Supplementary material: File

Ortega-Mora et al. supplementary material

Ortega-Mora et al. supplementary material

Download Ortega-Mora et al. supplementary material(File)
File 118.6 KB