Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T03:53:34.421Z Has data issue: false hasContentIssue false

Identification of Heterogeneous Cognitive Subgroups in Community-Dwelling Older Adults: A Latent Class Analysis of the Einstein Aging Study

Published online by Cambridge University Press:  10 January 2018

Andrea R. Zammit*
Affiliation:
1Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York Einstein Aging Study, Albert Einstein College of Medicine, Bronx, New York
Charles B. Hall
Affiliation:
1Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York Einstein Aging Study, Albert Einstein College of Medicine, Bronx, New York Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
Richard B. Lipton
Affiliation:
1Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York Einstein Aging Study, Albert Einstein College of Medicine, Bronx, New York Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
Mindy J. Katz
Affiliation:
1Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York Einstein Aging Study, Albert Einstein College of Medicine, Bronx, New York
Graciela Muniz-Terrera
Affiliation:
The University of Edinburgh, Scotland
*
Correspondence and reprint requests to: Andrea R. Zammit, Saul B. Korey, Department of Neurology, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 3C9A, Bronx, NY 10461. E-mail: andrea.zammit@einstein.yu.edu

Abstract

Objectives: The aim of this study was to identify natural subgroups of older adults based on cognitive performance, and to establish each subgroup’s characteristics based on demographic factors, physical function, psychosocial well-being, and comorbidity. Methods: We applied latent class (LC) modeling to identify subgroups in baseline assessments of 1345 Einstein Aging Study (EAS) participants free of dementia. The EAS is a community-dwelling cohort study of 70+ year-old adults living in the Bronx, NY. We used 10 neurocognitive tests and 3 covariates (age, sex, education) to identify latent subgroups. We used goodness-of-fit statistics to identify the optimal class solution and assess model adequacy. We also validated our model using two-fold split-half cross-validation. Results: The sample had a mean age of 78.0 (SD=5.4) and a mean of 13.6 years of education (SD=3.5). A 9-class solution based on cognitive performance at baseline was the best-fitting model. We characterized the 9 identified classes as (i) disadvantaged, (ii) poor language, (iii) poor episodic memory and fluency, (iv) poor processing speed and executive function, (v) low average, (vi) high average, (vii) average, (viii) poor executive and poor working memory, (ix) elite. The cross validation indicated stable class assignment with the exception of the average and high average classes. Conclusions: LC modeling in a community sample of older adults revealed 9 cognitive subgroups. Assignment of subgroups was reliable and associated with external validators. Future work will test the predictive validity of these groups for outcomes such as Alzheimer’s disease, vascular dementia and death, as well as markers of biological pathways that contribute to cognitive decline. (JINS, 2018, 24, 511–523)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Army Individual Test Battery. (1944). Manual of directions and scoring. Washington, DC: War Department, Adjutant General’s Office.Google Scholar
Backman, L., Jones, S., Berger, A.K., Laukka, E.J., & Small, B.J. (2005). Cognitive impairment in preclinical Alzheimer’s disease: a meta-analysis. Neuropsychology, 19(4), 520531. doi: 10.1037/0894-4105.19.4.520 Google Scholar
Benton, A.L., & Hamsher, K. (1989). Multilingual Aphasia Examination. Iowa City: AJA Assoc.Google Scholar
Buschke, H. (1973). Selective reminding for analysis of memory and learning. Journal of Verbal Learning and Verbal Behavior, 12, 543550.Google Scholar
Buschke, H. (1984). Cued recall in amnesia. Journal of Clinical Neuropsychology, 6(4), 433440.Google Scholar
Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13(2), 195212. doi: 10.1007/bf01246098 Google Scholar
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A Global Measure of Perceived Stress. Journal of Health and Social Behavior, 24(4), 385396.Google Scholar
Collins, L.M., Graham, J.W., Long, J.D., & Hansen, W.B. (1994). Crossvalidation of latent class models of early substance use onset. Multivariate Behavioral Research, 29(2), 165183. doi: 10.1207/s15327906mbr2902_3 Google Scholar
Collins, L.M., & Lanza, S.T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. Hoboken, NJ: John Wiley & Sons.Google Scholar
Costa, P.S., Santos, N.C., Cunha, P., Palha, J.A., & Sousa, N. (2013). The use of bayesian latent class cluster models to classify patterns of cognitive performance in healthy ageing. PLoS One, 8(8), e71940. doi: 10.1371/journal.pone.0071940 CrossRefGoogle ScholarPubMed
Davidson, J.E., Irizarry, M.C., Bray, B.C., Wetten, S., Galwey, N., Gibson, R., & Monsch, A.U. (2010). An exploration of cognitive subgroups in Alzheimer’s disease. Journal of the International Neuropsychological Society, 16(2), 233243. doi: 10.1017/S1355617709991160 Google Scholar
Deary, I.J., & Batty, G.D. (2007). Cognitive epidemiology. Journal of Epidemiology and Community Health, 61(5), 378384. doi: 10.1136/jech.2005.039206 Google Scholar
Delano-Wood, L., Bondi, M.W., Sacco, J., Abeles, N., Jak, A.J., Libon, D.J., & Bozoki, A. (2009). Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society, 15(6), 906914. doi: 10.1017/S1355617709990257 Google Scholar
Diagnostic and Statistical Manual of Mental Disorders, DSM-IV. (1994). (pp. 133). Washington, DC: American Psychiatric Association.Google Scholar
Elias, M.F., Beiser, A., Wolf, P.A., Au, R., White, R.F., & D’Agostino, R.B. (2000). The preclinical phase of alzheimer disease: A 22-year prospective study of the Framingham Cohort. Archives of Neurology, 57(6), 808813.Google Scholar
Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). (2001). JAMA, 285(19), 24862497.CrossRefGoogle Scholar
Ezzati, A., Jiang, J., Katz, M.J., Sliwinski, M.J., Zimmerman, M.E., & Lipton, R.B. (2014). Validation of the Perceived Stress Scale in a community sample of older adults. International Journal of Geriatric Psychiatry, 29(6), 645652. doi: 10.1002/gps.4049 Google Scholar
Franzen, M.D., Burgess, E.J., & Smith-Seemiller, L. (1997). Methods of estimating premorbid functioning. Archives of Clinical Neuropsychology, 12(8), 711738. doi: http://dx.doi.org/10.1016/S0887-6177(97)00046-2 Google Scholar
Gelber, R.P., Launer, L.J., & White, L.R. (2012). The Honolulu-Asia Aging Study: Epidemiologic and neuropathologic research on cognitive impairment. Current Alzheimer Research, 9(6), 664672.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian Data Analysis (2nd ed.), Boca Raton, FL: Chapman and Hall/CRC.Google Scholar
Goldberg, L.R., Johnson, J.A., Eber, H.W., Hogan, R., Ashton, M.C., Cloninger, C.R., & Gough, H.C. (2006). The International Personality Item Pool and the future of public-domain personality measures. Journal of Research in Personality, 40, 8496.CrossRefGoogle Scholar
Grimm, K.J., Mazza, G.L., & Davoudzadeh, P. (2017). Model selection in finite mixture models: A k-fold cross-validation approach. Structural Equation Modeling: A Multidisciplinary Journal, 24(2), 246256. doi: 10.1080/10705511.2016.1250638 Google Scholar
Grober, E., Dickson, D., Sliwinski, M.J., Buschke, H., Katz, M., Crystal, H., & Lipton, R.B. (1999). Memory and mental status correlates of modified Braak staging. Neurobiology of Aging, 20(6), 573579.Google Scholar
Hall, C.B., Lipton, R.B., Sliwinski, M., & Stewart, W.F. (2000). A change point model for estimating the onset of cognitive decline in preclinical Alzheimer’s disease. Statistics in Medicine, 19(11-12), 15551566.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Hanfelt, J.J., Wuu, J., Sollinger, A.B., Greenaway, M.C., Lah, J.J., Levey, A.I., & Goldstein, F.C. (2011). An exploration of subgroups of mild cognitive impairment based on cognitive, neuropsychiatric and functional features: Analysis of data from the National Alzheimer’s Coordinating Center. American Journal of Geriatric Psychiatry, 19(11), 940950. doi: 10.1097/JGP.0b013e31820ee9d2 Google Scholar
Hewitt, P.L., Flett, G.L., & Mosher, S.W. (1992). The Perceived Stress Scale: Factor structure and relation to depression symptoms in a psychiatric sample. Journal of Psychopathology and Behavioral Assessment, 14(3), 247257. doi: 10.1007/BF00962631 Google Scholar
Hofer, S.M., & Piccinin, A.M. (2010). Toward an integrative science of life-span development and aging. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65B(3), 269278. doi: 10.1093/geronb/gbq017 Google Scholar
Hülür, G., Ram, N., Willis, S.L., Schaie, K.W., & Gerstorf, D. (2015). Cognitive dedifferentiation with increasing age and proximity of death: Within-person evidence from the Seattle Longitudinal Study. Psychology of Aging, 30(2), 311323. doi: 10.1037/a0039260 Google Scholar
Kaplan, E.F., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test (2nd ed.), Philadelphia: Lea & Febiger.Google Scholar
Katz, M.J., Lipton, R.B., Hall, C.B., Zimmerman, M.E., Sanders, A.E., Verghese, J., & Derby, C.A. (2012). Age-specific and sex-specific prevalence and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in blacks and whites: a report from the Einstein Aging Study. Alzheimer Disease and Associated Disorders, 26(4), 335343. doi: 10.1097/WAD.0b013e31823dbcfc Google Scholar
Katzman, R., Brown, T., Fuld, P., Peck, A., Schechter, R., & Schimmel, H. (1983). Validation of a short Orientation-Memory-Concentration Test of cognitive impairment. American Journal of Psychiatry, 140(6), 734739. doi: 10.1176/ajp.140.6.734 Google Scholar
Ko, K.J., Berg, C.A., Butner, J., Uchino, B.N., & Smith, T.W. (2007). Profiles of successful aging in middle-aged and older adult married couples. Psychology of Aging, 22(4), 705718. doi: 10.1037/0882-7974.22.4.705 Google Scholar
La Rue, A., & Jarvik, L.F. (1987). Cognitive function and prediction of dementia in old age. International Journal of Aging & Human Development, 25(2), 7989.Google Scholar
Libon, D.J., Xie, S.X., Eppig, J., Wicas, G., Lamar, M., Lippa, C., & Wambach, D.M. (2010). The heterogeneity of mild cognitive impairment: A neuropsychological analysis. Journal of the International Neuropsychological Society, 16(1), 8493. doi: 10.1017/s1355617709990993 Google Scholar
Masur, D.M., Sliwinski, M., Lipton, R.B., Blau, A.D., & Crystal, H.A. (1994). Neuropsychological prediction of dementia and the absence of dementia in healthy elderly persons. Neurology, 44(8), 14271432.Google Scholar
Maxson, P.J., Berg, S., & McClearn, G. (1997). Multidimensional patterns of aging: A cluster-analytic approach. Experimental Aging Research, 23(1), 1331. doi: 10.1080/03610739708254024 Google Scholar
McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: John Wiley & Sons.CrossRefGoogle Scholar
Monsch, A.U., Bondi, M.W., Butters, N., Salmon, D.P., Katzman, R., & Thal, L.J. (1992). Comparisons of verbal fluency tasks in the detection of dementia of the Alzheimer type. Archives of Neurology, 49(12), 12531258.Google Scholar
Morack, J., Ram, N., Fauth, E.B., & Gerstorf, D. (2013). Multidomain trajectories of psychological functioning in old age: A longitudinal perspective on (uneven) successful aging. Developmental Psychology, 49(12), 23092324. doi: 10.1037/a0032267 Google Scholar
Mortamais, M., Ash, J.A., Harrison, J., Kaye, J., Kramer, J., Randolph, C., & Ritchie, K. (2017). Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimer’s & Dementia. doi: http://dx.doi.org/10.1016/j.jalz.2016.06.2365 Google Scholar
Muthén, L.K., & Muthén, B.O. (1998–2016). MPlus User’s Guide (7th ed.), Los Angeles, CA: Muthén & Muthén.Google Scholar
Nagin, D.S., & Odgers, C.L. (2010). Group-based trajectory modeling (nearly) two decades later. Journal of Quantitative Criminology, 26(4), 445453. doi: 10.1007/s10940-010-9113-7 Google Scholar
Nagin, D.S., & Tremblay, R.E. (2005). Developmental trajectory groups: Fact or a useful statistical fiction?*. Criminology, 43(4), 873904. doi: 10.1111/j.1745-9125.2005.00026.x Google Scholar
Nylund, K.L., Asparouhov, T., & Muthén, B.O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535569. doi: 10.1080/10705510701575396 Google Scholar
Peter, J., Abdulkadir, A., Kaller, C., Kummerer, D., Hull, M., Vach, W., & Kloppel, S. (2014). Subgroups of Alzheimer’s disease: stability of empirical clusters over time. Journal of Alzheimers Disease, 42(2), 651661. doi: 10.3233/jad-140261 CrossRefGoogle ScholarPubMed
RStudio. Integrated development environment for R (Version 1.0.136). Boston, MA. Retrieved from http://www.rstudio.org/.Google Scholar
Raftery, A.E. (1995). Bayesian model selection in social research. Sociological Methodology, 111163.Google Scholar
Rajan, K.B., Wilson, R.S., Weuve, J., Barnes, L.L., & Evans, D.A. (2015). Cognitive impairment 18 years before clinical diagnosis of Alzheimer disease dementia. Neurology, 85, 898904. doi: 10.1212/wnl.0000000000001774 Google Scholar
Rapp, M.A., & Reischies, F.M. (2005). Attention and executive control predict Alzheimer disease in late life: results from the Berlin Aging Study (BASE). American Journal of Geriatric Psychiatry, 13(2), 134141. doi: 10.1176/appi.ajgp.13.2.134 Google Scholar
Ritchie, C.W., Molinuevo, J.L., Truyen, L., Satlin, A., Van der Geyten, S., & Lovestone, S. (2016). Development of interventions for the secondary prevention of Alzheimer’s dementia: the European Prevention of Alzheimer’s Dementia (EPAD) project. The Lancet Psychiatry, 3(2), 179186. doi:http://dx.doi.org/ 10.1016/S2215-0366(15)00454-X CrossRefGoogle ScholarPubMed
Ritchie, K., Ropacki, M., Albala, B., Harrison, J., Kaye, J., Kramer, J., & Ritchie, C.W. (2017). Recommended cognitive outcomes in preclinical Alzheimer’s disease: Consensus statement from the European Prevention of Alzheimer’s Dementia project. Alzheimer’s & Dementia, 13, 186195. doi:http://dx.doi.org/ 10.1016/j.jalz.2016.07.154 CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society, 16(5), 754760. doi: 10.1017/S1355617710000706 Google Scholar
Salthouse, T.A. (2013). Effects of age and ability on components of cognitive change. Intelligence, 41(5), 501511. doi: 10.1016/j.intell.2013.07.005 Google Scholar
Sheikh, J.I., & Yesavage, J.A. (1986). Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clinical Gerontologist, 5, 165173.Google Scholar
Sliwinski, M.J., Hofer, S.M., & Hall, C. (2003). Correlated and coupled cognitive change in older adults with and without preclinical dementia. Psychology of Aging, 18(4), 672683. doi: 10.1037/0882-7974.18.4.672 Google Scholar
Smith, J., & Baltes, P.B. (1997). Profiles of psychological functioning in the old and oldest old. Psychology of Aging, 12(3), 458472.Google Scholar
Snowdon, D.A., Kemper, S.J., Mortimer, J.A., Greiner, L.H., Wekstein, D.R., & Markesbery, W.R. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Findings from the Nun Study. JAMA, 275(7), 528532.Google Scholar
SPSS Inc. (Released 2016). IBM SPSS Statistics for Windows. Armonk, NY: IBM Corp.Google Scholar
Vermunt, J., & Magidson, J. (2002). Latent class cluster analysis. In J. Hagenaars & A. McCutcheon (Eds.), Advances in latent class analysis. Cambridge: Cambridge University Press.Google Scholar
Wechsler, D. (1987). Wechsler Memory Scale - Revised. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (1997). Adult Intelligence Scale-III (3rd ed.), San Antonio, TX: Psychological Corporation.Google Scholar
Whalley, L.J., Starr, J.M., Athawes, R., Hunter, D., Pattie, A., & Deary, I.J. (2000). Childhood mental ability and dementia. Neurology, 55(10), 14551459.Google Scholar
White, L.R., Edland, S.D., Hemmy, L.S., Montine, K.S., Zarow, C., Sonnen, J.A., & Montine, T.J. (2016). Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia Aging Studies. Neurology, 86(11), 10001008. doi: 10.1212/wnl.0000000000002480 Google Scholar
Wurpts, I.C., & Geiser, C. (2014). Is adding more indicators to a latent class analysis beneficial or detrimental? Results of a Monte-Carlo study. Frontiers in Psychology, 5, 920. doi: 10.3389/fpsyg.2014.00920 Google Scholar
Ylikoski, R., Ylikoski, A., Keskivaara, P., Tilvis, R., Sulkava, R., & Erkinjuntti, T. (1999). Heterogeneity of cognitive profiles in aging: successful aging, normal aging, and individuals at risk for cognitive decline. European Journal of Neurology, 6(6), 645652.Google Scholar
Zammit, A.R., Starr, J.M., Johnson, W., & Deary, I.J. (2014). Patterns and associates of cognitive function, psychosocial wellbeing and health in the Lothian Birth Cohort 1936. BMC Geriatrics, 14, 5353. doi: 10.1186/1471-2318-14-53 Google Scholar
Supplementary material: File

Zammit et al. supplementary material

Tables S1-S4

Download Zammit et al. supplementary material(File)
File 69.3 KB