Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T01:47:32.903Z Has data issue: false hasContentIssue false

Differentiation of physiological aspects of the burrowing shrimp Callianassa tyrrhena in relation to general pollution load

Published online by Cambridge University Press:  06 October 2009

M. Thessalou-Legaki
Affiliation:
Section of Zoology-Marine Biology, University of Athens, Panepistimioupolis, GR 157 84, Athens, Greece.
P. Kerambrun
Affiliation:
Centre d'Oceanologie de Marseille, URA 41, Campus de Luminy, Case 901, 13288 Marseille Cedex 9, France
G. Verriopoulos
Affiliation:
Section of Zoology-Marine Biology, University of Athens, Panepistimioupolis, GR 157 84, Athens, Greece.

Abstract

Two aspects of the physiology of the burrowing shrimp Caliianassa tyrrhena (Decapoda: Thalassinidea) were studied in order to investigate the effects of the general pollution load: total (TRR) and weight-specific respiration rate (SRR) as well as the digestive enzyme activity of the digestive gland.

Caliianassa tyrrhena exhibited a very low respiration rate (mean TRR=64-29 μl 02 animal−1h−1, N=60; mean SRR=0·18 μl 02mg DW−1h−1, N=61).

The slope of the TRR-DW logarithmic regression (b=0·64) showed that respiration in C. tyrrhena is proportional to body surface. Size is the dominant factor (among size, sex, season and locality) determining the variation in respiration rate. Comparison between the two sites with the different pollution load showed that there were no significant differences in the respiration rates of the same size class and season, except for the youngest animals in summer which showed a significant decrease in their respiration rate at the polluted site.

A similar ‘inhibitory’ effect of pollution has been observed in the activity of the majority of the 19 digestive enzymes tested. Only three e.g., trypsin, β-galactosidase and α-glucosidase showed an increase in polluted waters.

One could suggest, therefore, that C. tyrrhena can be considered to be preadapted to the low oxygen conditions encountered in the sediments, because of its burrowing mode of living.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arfi, R., Champalbert, G., Patriti, G., Puddu, A. & Reys, J.-P., 1982. étude préliminaire comparée du plancton du Vieux-Port, de l’avant-port et du Golfe de Marseille (liaison avec des paramètres physiques, chimiques et de pollution). Tethys, 10, 211217.Google Scholar
Arfi, R., Pagano, M. & Saint-Jean L., 1987. Communautés zooplanctoniques dans une lagune tropicale (la lagune Ébrié, Côte d’Ivoire): variations spatio-temporelles. Revue d’Hydrobiologie Tropicale. Orstom. Paris, 20, 2135.Google Scholar
Farley, R.D. & Case, J.F., 1968. Perception of external oxygen by the burrowing shrimp Callianassa californiensis Dana and C. affinis Dana. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 134, 361365.CrossRefGoogle ScholarPubMed
Felder, D.L., 1979. Respiratory adaptations of the estuarine mud shrimp, Callianassa jamaicense (Schmitt, 1935) (Crustacea, Decapoda, Thalassinidea). Biological Bulletin. Marine Biological Laboratory, Woods Hole, 157, 125138.CrossRefGoogle Scholar
Friligos, N. & Zenetos, A., 1988. Elefsis Bay anoxia: nutrient conditions and benthic community structure. Marine Ecology. Pubblicazioni della Statzione Zoologia di Napoli I, 9, 273290.CrossRefGoogle Scholar
Hanekom, N.M. & Baird, D., 1987. Oxygen consumption of Callianassa kraussi Stebbing (Thalassinidea, Decapoda, Crustacea) in relation to various environmental conditions. South African Journal of Zoology, 22, 183189.CrossRefGoogle Scholar
Hemmingsen, A.M., 1960. Metabolism in relation to body size. Report of the Steno Memorial Hospital and the Nordisk Insidinlaboratorium. Copenhagen, 9, 1110.Google Scholar
Hill, B., 1981. Respiratory adaptations of three species of Upogebia (Thalassinidea, Crustacea) with special reference to low tide periods. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 160, 272279.CrossRefGoogle Scholar
Jones, J.D., 1972. Comparative physiology of respiration. London: Edward Arnold. [Special Topics in Biology series.]Google Scholar
Kerambrun, P. & Guérin, J.-P., 1984. L'électrophorèse dans l'étude des stress chez les invertébrés marins. Bulletin de la Société Zoologique de France, 109, 333341.Google Scholar
Kerambrun, P., Thessalou-Legaki, M. & Verriopoulos, G., 1993. Comparative effects of environmental conditions, in eutrophic polluted and oligotrophic non-polluted areas of the Saronikos Gulf (Greece), on the physiology of the copepod Acartia clausi. Comparative Biochemistry and Physiology, 105C, 415420.Google Scholar
Koike, I. & Mukai, H., 1983. Oxygen and inorganic nitrogen contents and fluxes in the burrows of the shrimps Callianassa japonica and Upogebia major. Marine Ecology Progress Series, 12, 185190.CrossRefGoogle Scholar
Magnum, C.P., 1983. Oxygen transport in the blood. In The biology of Crustacea. Vol. 5. Internal anatomy and physiological regidation (ed. Bliss, D.E.), pp. 373419. New York: Academic Press.Google Scholar
Miller, K.I., Pritchard, A.W. & Rutledge, P.S., 1976. Respiratory regulation and the role of the blood in the burrowing shrimp Callianassa californiensis (Decapoda: Thalassinidea). Marine Biology, 36, 233242.CrossRefGoogle Scholar
Monget, D., 1978. Mise au point d'une microméthod de détection et de mesures d'activité enzymatique (Api-Zym). Résultats obtenus dans différents domaines d'application. Thèse Docteur-Ingénieur, Université C. Bernard Lyon I.Google Scholar
Moraitou-Apostolopoulou, M., 1974. An ecological approach to the systematic study of plank-tonic copepods in a polluted area (Saronic Gulf, Greece). Bollettino di Pesca, Piscicoltura e Idrobiologia, 29, 2947.Google Scholar
Moraitou-Apostolopoulou, M. & Verriopoulos, G., 1979a. Différenciation morphologique entre deux populations d' Acartia clausi (Copepoda) provenant de biotopes différemment pollués. Révue Internationale d' Océanographie Médicale. Nice, 53–54, 7786.Google Scholar
Moraitou-Apostolopoulou, M. & Verriopoulos, G., 1979b. Some effects of sublethal concentrations of copper on a marine copepod. Marine Pollution Bulletin, 10, 8892.CrossRefGoogle Scholar
Moraitou-Apostolopoulou, M. & Verriopoulos, G., 1981a. Thermal tolerance of two populations of Acartia clausi (Copepoda) living at differently polluted areas. Hydrobiologia, 77, 36.CrossRefGoogle Scholar
Moraitou-Apostolopoulou, M. & Verriopoulos, G., 1981b. The longevity of three generations of normal and pollution-impacted Acartia clausi (Copepoda) populations in the Saronikos Gulf (Greece). Hydrobiologia, 77, 715.CrossRefGoogle Scholar
Moraitou-Apostolopoulou, M. & Verriopoulos, G., 1981c. Egg-laying in two populations of Acartia clausi exposed to different degrees of pollution. Vie et Milieu, 31, 6569.Google Scholar
Mukai, H. & Koike, I., 1984. Behaviour and respiration of the burrowing shrimps Upogebia major (de Haan) and Callianassa japonica (de Haan). Journal of Crustacean Biology, 4, 191200.CrossRefGoogle Scholar
Mukai, H., Koike, I., Nishihira, M. & Nojima, S., 1989. Oxygen consumption and ammonium excretion of mega-sized benthic invertebrates in a tropical seagrass bed. Journal of Experimental Marine Biology and Ecology, 134, 101115.CrossRefGoogle Scholar
Nicolaidou, A., Zenetos, A., Pancucci, M.A. & Simboura, N., 1993. Comparing ecological effects of two different types of pollution using multivariate techniques. Marine Ecology. Pubblicazioni della Statzione Zoologia di Napoli 1, 14, 113128.CrossRefGoogle Scholar
Omori, M. & Ikeda, T., 1984. Methods in marine zooplankton ecology. New York: John Wiley & Sons.Google Scholar
Ott, J.A., Fuchs, B., Fuchs, R. & Malasek, A., 1976. Observations on the biology of Callianassa stebbingi Borrodaille and Upogebia littoralis Risso and their effect upon sediment. Senckenbergiana Maritima. Frankfurt-am-Main, 8, 6179.Google Scholar
Phillipson, J., 1981. Bioenergetics options and phylogeny. In Physiological ecology: an evolutionary approach to resource use (ed. Townsend, C.R. and Calow, P.), pp. 2050. Oxford: Blackwell Scientific Publications.Google Scholar
Rivière, D. & Kerambrun, P., 1983. Impact d' une pollution d'origine urbaine sur les activités enzymatiques de deux copépodes planctoniques (Acartia clausi et Centropages typicus). Marine Biology, 75, 2535.CrossRefGoogle Scholar
Thaker, A.A. & Haritos, A.A., 1989a. Cadmium bioaccumulation and effects on soluble peptides, proteins and enzymes in the hepatopancreas of the shrimp Callianassa tyrrhena. Comparative Biochemistry and Physiology, 94C, 6370.Google Scholar
Thaker, A.A. & Haritos, A.A., 1989b. Mercury bioaccumulation and effects on soluble peptides, proteins and enzymes in the hepatopancreas of the shrimp Callianassa tyrrhena. Comparative Biochemistry and Physiology, 94C, 199205.Google Scholar
Thessalou-Legaki, M., 1987. Contribution to the study of ecology and biology of the shrimp Callianassa tyrrhena (Petagna, 1792) (Crustacea, Decapoda, Thalassinidea). PhD Thesis, University of Athens. [In Greek.]Google Scholar
Thessalou-Legaki, M., 1990. Advanced larval development of Callianassa tyrrhena (Decapoda: Thalassinidea) and the effect of environmental factors. Journal of Crustacean Biology, 10, 659666.CrossRefGoogle Scholar
Thompson, R.K. & Pritchard, A.W., 1969. Respiratory adaptations of two burrowing crustaceans, Callianassa californiensis and Upogebia pugettensis (Decapoda, Thalassinidea). Biologial Bulletin. Marine Biological Laboratory, Woods Hole, 136, 274287.CrossRefGoogle Scholar
Torres, J.J., Gluck, D.L. & Childress, J.J., 1977. Activity and physiological significance of the pleopods in the respiration of Callianassa californiensis (Dana) (Crustacea: Decapoda: Thalassinidea). Biological Bulletin. Marine Biological Laboratory, Woods Hole, 152, 134146.CrossRefGoogle ScholarPubMed
Zebe, E., 1982. Anaerobic metabolism in Upogebia pugettensis and Callianassa californiensis (Crustacea, Thalassinidea). Comparative Biochemistry and Physiology, 72B, 613617.Google Scholar
Zenetos, A. & Bogdanos, C., 1987. Benthic community structure as a tool in evaluating effects of pollution in Elefsis Bay. Thalassographica, 10, 721.Google Scholar
Zenetos, A., Panagiotidis, P. & Simboura, N., 1990. Études des peuplements benthiques de substrat meuble au large du débouche en mer du grand collecteur d'Athènes Révue Internationale d'Océanographie Mèdicale. Nice, 9798, 5571.Google Scholar