Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T23:28:11.818Z Has data issue: false hasContentIssue false

Drilling and chipping patterns of bivalve prey predation by Hexaplex trunculus (Mollusca: Gastropoda: Muricidae)

Published online by Cambridge University Press:  30 July 2007

Brian Morton
Affiliation:
Department of Zoology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
M. Peharda
Affiliation:
Institute of Oceanography and Fisheries, šetaliste I. Meštrović a 63, 21000 Split, Croatia
E.M. Harper
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK

Abstract

The predatory caenogastropod Hexaplex trunculus employed different methods to access different species of bivalve prey characterized by different shell thicknesses. Hexaplex trunculus drilled Callista chione and Venus verrucosa at their shell margins but the latter species also laterally. It also attempted to drill two species of Tapes but successfully penetrated these only after chipping the shell margin. Chipping, whereby a labral spine is forcibly pushed between the prey's valves, especially posteriorly, to break them followed by proboscis insertion, was typically applied to access the thinner shelled prey Cerastoderma glaucum whereas Modiolus barbatus and Mytilus galloprovincialis were either chipped or drilled. The pattern of M. galloprovincialis shell penetration appears related to predator and prey size. Small (40 mm shell height) H. trunculus tended to drill rather than marginally chip M. galloprovincialis. Medium sized (55 mm shell height) H. trunculus either chipped or drilled M. galloprovincialis in approximately equal proportions but also at the valve margin. Larger (70 mm shell height) H. trunculus tended to laterally drill average sized (35 mm shell length) and the biggest (65 mm shell length) M. galloprovincialis. When larger M. galloprovincialis are attacked it thus becomes increasingly more difficult for H. trunculus to chip and drill the shell margin, possibly because the periostracum is thicker here in such individuals, and the predator resorts to lateral drilling. This is possible because as the mytilid ages its surface periostracum becomes progressively eroded and thus thinner and easier to access. Scanning electron microscopy (SEM) identified shell microstructure damage which shows that the chipping and drilling behaviours of H. trunculus result from labral spine damage and dissolutional etching, respectively, rather than mechanical radula rasping. These observations have implications for the use of such predation marks to identify the predator taxon implicated from holes in either empty Recent shells or fossil material.

Type
Research Article
Copyright
2007 Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)