Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-17T14:48:13.119Z Has data issue: false hasContentIssue false

Analysis of the ontogenetic variation in body and beak shape of the Illex argentinus inner shelf spawning groups by geometric morphometrics

Published online by Cambridge University Press:  09 July 2009

Augusto César Crespi-Abril*
Affiliation:
Centro Nacional Patagónico (CENPAT-CONICET), Boulevard Brown s/n, Puerto Madryn, (Chubut, Argentina)
Enrique Mario Morsan
Affiliation:
Instituto de Biología Marina and Pesquera ‘Almirante Storni’. Universidad Nacional del Comahue. San Antonio Oeste (Rio Negro, Argentina)
Pedro José Barón
Affiliation:
Centro Nacional Patagónico (CENPAT-CONICET), Boulevard Brown s/n, Puerto Madryn, (Chubut, Argentina)
*
Correspondence should be addressed to: A.C. Crespi-Abril, Centro Nacional Patagónico (CENPAT-CONICET), Boulevard Brown s/n, Puerto Madryn, (Chubut, Argentina) email: crespi@cenpat.edu.ar

Abstract

In this paper we analysed size and shape differences of body (mantle and fins) and inferior beak of the squid Illex argentinus from two Patagonian inner-shelf spawning groups. A new method was developed to reconstruct three-dimensional coordinates based on the 2-D projection of the beak on a plane. Shape of the beak did not vary between groups, sexes and maturity condition of individuals. Also, no beak shape changes were observed through the ontogeny. In contrast, as larger and heavier squids were considered in shape analysis, body widened near the fin insertion, and fin area increased. Our results suggest that shape adaptations of I. argentinus through the ontogeny reflect modifications to optimize swimming performance rather than to increase gamete holding capacity.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D.C., Rohlf, F.J. and Slice, D. (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71, 56.CrossRefGoogle Scholar
Arkhipkin, A. (1993) Age, growth, stock structure and migratory rate of prespawning short-finned squid, Illex argentinus based on statolith ageing investigations. Fishery Research 16, 313338.CrossRefGoogle Scholar
Arkhipkin, A. and Laptikhovsky, V. (1994) Seasonal and interannual variability in growth and maturation of winter-spawning Illex argentinus (Cephalopoda, Ommastrephidae) in the Southwest Atlantic. Aquatic Living Resources 7, 221232.CrossRefGoogle Scholar
Barón, P.J. and , M.E. (2002) Morphometry of the northern Patagonian sympatric populations of Loligo sanpaulensis and Loligo gahi. Journal of the Marine Biological Association of the United Kingdom 82, 269278.CrossRefGoogle Scholar
Bartol, I.K., Krueger, P.S., Thompson, J.T. and Stewart, W.J. (2008) Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integrative and Comparative Biology 48, 720733, doi:10.1093/icb/icn043.CrossRefGoogle ScholarPubMed
Bookstein, F.L. (1991) Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press.Google Scholar
Bookstein, F.L. (1998) A hundred years of morphometrics. Acta Zoologica Academiae Scientiarum Hungaricae 44, 759.Google Scholar
Bookstein, F.L., Chernoff, B., Elder, R.L., Humphries, J.M., Smith, G.R. and Strauss, R.E. (1985) Morphometrics in evolutionary biology. Philadelphia: Academy of Natural Sciences.Google Scholar
Brunetti, N. and Ivanovic, M. (1991) Morfología y morfometría de los estatolitos del calamar (Illex argentinus). Frente Maritimo 9, 5361.Google Scholar
Cadrin, S.X. (2000) Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10, 91112.CrossRefGoogle Scholar
Carpenter, K.E., Sommer III, H.J. and Marcus, L.F. (1996) Converting truss interlandmark distances to Cartesian coordinates. In Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. (eds) Advances in morphometrics. NATO ASI Series, Series A: Life Sciences 284, pp. 103111.CrossRefGoogle Scholar
Carvalho, G.R. and Nigmatullin, Ch.M. (1998) Stock structure analysis and species identification. In Rodhouse, P., Dawe, E. and O'Dor, R. (eds) Squid recruitment dynamics. The genus Illex as a model, the commercial Illex species and influences on variability. FAO Fisheries Technical Papers 376, pp. 199232.Google Scholar
Crespi-Abril, A.C., Morsan, E.M. and Barón, P.J. (2008) Contribution to understanding the population structure and maturation of Illex argentinus (Castellanos, 1960): the case of the inner-shelf spawning groups in San Matias Gulf (Patagonia, Argentina). Journal of Shellfish Research 27, 12251231.CrossRefGoogle Scholar
Darwin, C. (1859) On the Origin of Species by Means of Natural Selection. London: Murray.Google Scholar
Forsythe, J. (1993) A working hypothesis of how seasonal temperature change may impact the field growth of young cephalopods. In Okutani, T., O'Dor, R. and Kubodera, T. (eds) Recent advances in cephalopods fisheries and biology. Tokyo: Tokai University, pp. 133143.Google Scholar
Forsythe, J.W., Walsh, L.S., Turk, P.E. and Lee, P.G. (2001) Impact of temperature on juvenile growth and age at first egg-laying of the Pacific reef squid Sepioteuthis lessoniana reared in captivity. Marine Biology 138, 103112.CrossRefGoogle Scholar
Haefner, P.A. (1964) Morphometry of the Common Atlantic Squid, Loligo pealei, and the Brief Squid, Lolliguncula brevis, in Delaware Bay. Chesapeake Science 3, 138144.CrossRefGoogle Scholar
Haimovici, M., Brunetti, N., Rodhouse, P., Csirke, J. and Leta, R.H. (1998) Illex argentinus. In Rodhouse, P., Dawe, E. and O'Dor, R. (eds) Squid recruiment dynamics. The genus Illex as a model, the commercial Illex species and influences on variability. FAO Fisheries Technical Papers 376, pp. 2758.Google Scholar
Hatfield, E.M.C. (2000) Do some like it hot? Temperature as a possible determinant of variability in the growth of the Patagonian squid, Loligo gahi (Cephalopoda: Loliginidae). Fishery Research 47, 2740.CrossRefGoogle Scholar
Hernández-García, V. and Castro, J.J. (1998) Morphological variability in Illex coindetii (Cephalopoda: Ommastrephidae) along the north-west coast of Africa. Journal of the Marine Biological Association of the United Kingdom 78, 12591268.CrossRefGoogle Scholar
Ivanovic, M.L. and Brunetti, N.E. (1997) Description of Illex argentinus beaks and rostral length relationships with size and weight of squids. Revista de Investigación y Desarrollo Pesquero 11, 135144.Google Scholar
Jackson, G.D. and Domeier, M.L. (2003) The effects of an extraordinary El Niño/La Niña event on the size and growth of the squid Loligo opalescens off Southern California. Marine Biology 142, 925935.CrossRefGoogle Scholar
Lombarte, A., Rufino, M.M. and Sánchez, P. (2006) Statolith identification of Mediterranean Octopodidae, Sepiidae, Loliginidae, Ommastrephidae and Enoploteuthidae based on warp analyses. Journal of the Marine Biological Association of the United Kingdom 86, 767771.CrossRefGoogle Scholar
Martínez, P., Sanjuan, E.A. and Guerra, E.A. (2002) Identification of Illex coindetii, I. illecebrosus and I. argentinus (Cephalopoda: Ommastrephidae) throughout the Atlantic Ocean; by body and beak characters. Marine Biology 141, 131143.Google Scholar
Morsan, E. and González, R. (1996) Sobre la presencia de dos unidades demográficas de la población de calamar (Illex argentinus, Cephalopoda: Ommastrophidae) en el golfo San Matías. Frente Maritimo 16, 125130.Google Scholar
Neige, P. (2006) Morphometrics of hard structures in cuttlefish. Vie et Milieu 56, 121127.Google Scholar
Nigmatullin, Ch.M. (1989) Las especies del calamar más abundantes del Atlántico sudoeste y sinopsis sobre ecología del calamar Illex argentinus. Frente Maritimo 5, 781.Google Scholar
O'Dor, R.K. and Hoar, J.A. (2000) Does geometry limit squid growth? ICES Journal or Marine Science 57, 814.CrossRefGoogle Scholar
Richtsmeier, J.T., Burke de Leon, V. and Lele, S.R. (2002) The promise of geometric morphometrics. Yearbook of Physiology and Anthropology 45, 6391.CrossRefGoogle Scholar
Rohlf, F.J. (1998) On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47, 147158.CrossRefGoogle ScholarPubMed
Rohlf, F.J. (1999) Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification 16, 197223.CrossRefGoogle Scholar
Rohlf, F.J. (2001) TPSDig 1.47, TPSUtil 1.37 and TPSRelw 1.44 Software. Stony Brook: State University of New York.Google Scholar
Rufino, M.M., Abelló, P. and Yule, A.B. (2006) Geographic and gender shape differences in the carapace of Liocarcinus depurator (Brachyura: Portunidae) using geometric morphometrics and the influence of a digitizing method. Journal of Zoology 269, 458465.CrossRefGoogle Scholar
Shea, E.K. and Vecchione, M. (2002) Quantification of ontogenetic discontinuities in three species of oegpsid squids in using model II piecewise linear regression. Marine Biology 140, 971979.Google Scholar
Silva, T.N. (2003) Estrutura populacional e biologia reproductive do calamar, Illex argentinus (Castellanos, 1960) (Cephalopoda: Ommastrephidae), capturado pela frota de arrastro no Sudeste e Sul do Brasil. Degree thesis. Universidade do Vale do Itajaí. Centro de Ciências Tecnológicas da Terra e do Mar. p. 60.Google Scholar
Slice, D.E. (1998) Morpheus et al. Software. Stony Brook: State University of New York.Google Scholar
Thompson, J.T. and Kier, W.M. (2002) Ontogeny of squid mantle function: changes in the mechanics of escape-jet locomotion in the oval squid, Sepioteuthis lessoniana Lesson, 1830. Biological Bulletin. Marine Biological Laboratory, Woods Hole 203, 1426.CrossRefGoogle Scholar
Vega, M.A., Rocha, F.J., Guerra, A. and Osorio, C. (2002) Morphological differences between the Patagonian squid Loligo gahi populations from the Pacific and Atlantic Oceans. Bulletin of Marine Science 71, 903913.Google Scholar
Vidal, E.A. (1994) Relative growth of paralarvae and juveniles of Illex argentinus (Castellanos, 1960) in southern Brazil. Antarctic Science 6, 275282.CrossRefGoogle Scholar
Zecchini, F., Vecchione, M. and Roper, C.F.E. (1996) A quantitative comparison of hectocotylus morphology between Mediterranean and western Atlantic populations of the squid Illex coindetii (Cephalopoda: Ommastrephidae). Proceedings of the Biological Society of Washington 109, 591599.Google Scholar
Zeidberg, L.D. (2004) Allometry measurements from in situ video recordings can determine the size and swimming speeds of juvenile and adult squid Loligo opalescens (Cephalopoda: Myopsida). Journal of Experimental Biology 207, 41954203.CrossRefGoogle ScholarPubMed
Zelditch, M.L., Swiderski, D.L., Sheets, H.D. and Fink, W. (2004) Geometric morphometrics for biologists. New York and London: Elsevier Academic Press.Google Scholar