Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T18:19:23.875Z Has data issue: false hasContentIssue false

Photomorphogenesis in Early Development of Tilopteris Mertensii (Tilopteridales: Phaeophyceae)

Published online by Cambridge University Press:  11 May 2009

Ralph Kuhlenkamp
Affiliation:
Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland, A1B 3X9, Canada

Extract

The Tilopteridales are an order of three filamentous benthic Phaeophyceae found in North Atlantic and Arctic waters (Hooper et al., 1988). Detailed life history studies are reported for Haplospora globosa Kjellm. and Tilopteris mertensii (Turner, in Smith) Kutz. (Kuhlenkamp & Müller, 1985).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bentrup, F.W., 1964. Vergleichende Untersuchungen zur Polaritätsinduktion durch das Licht an der Equisetum-Spore und der Fucus-Zygote. Planta, 59, 472491.CrossRefGoogle Scholar
Brownlee, C. & Wood, J.W., 1986. A gradient of cytoplasmic free calcium in growing rhizoid cells of Fucus serratus. Nature, London, 320, 624626.CrossRefGoogle Scholar
Dring, M.J., 1984. Blue light effects in marine macroalgae. In Blue Light Effects in Biological Systems (ed. H., Senger), pp. 509516. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Dring, M.J. & Lüning, K., 1983. Photomorphogenesis of marine macroalgae. Encyclopedia of Plant Physiology, 16B, 545568.Google Scholar
Evans, L.V., Callow, J.A. & Callow, M.E., 1982. The biology and biochemistry of reproduction and early development in Fucus. Progress in Phycological Research, 1, 67110.Google Scholar
Hughes, J. & McCully, E., 1975. The use of an optical brightener in the study of plant structure. Stain Technology, 50, 319329.CrossRefGoogle Scholar
Jaffe, L.F., 1968. Localization in the developing Fucus egg and the general role of localizing currents. Advances in Morphogenesis, 7, 295328.CrossRefGoogle ScholarPubMed
Kropf, D.L., Kloareg, B. & Quatrano, R.S., 1988. Cell wall is required for fixation of the embryonic axis in Fucus zygotes. Science, New York, 239, 187190.CrossRefGoogle ScholarPubMed
Kuhlenkamp, R. & Müller, D.G., 1985. Culture studies on the life history of Haplospora globosa and Tilopteris mertensii (Tilopteridales, Phaeophyceae). British Phycological Journal, 20, 301312.CrossRefGoogle Scholar
Novotny, A.M. & Forman, M., 1975. The composition and development of cell walls of Fucus embryos. Planta, 122, 6778.CrossRefGoogle ScholarPubMed
Quatrano, R.S., 1978. Development of cell polarity. Annual Review of Plant Physiology, 29, 487510.CrossRefGoogle Scholar
Quatrano, R.S., Griffing, L.R., Huber-Walchli, V. & Doubet, R.S., 1985. Cytological and biochemical requirements for the establishment of a polar cell. Journal of Cell Science, supplement 2, 129141.CrossRefGoogle ScholarPubMed
Robinson, K.R. & Jaffe, L.F., 1975. Polarizing fucoid eggs drive a calcium current through themselves. Science, New York, 187, 7072.CrossRefGoogle ScholarPubMed
Weisenseel, M.H., 1979. Induction of polarity. Encyclopedia of Plant Physiology, 7, 485505.Google Scholar