Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T13:29:11.997Z Has data issue: false hasContentIssue false

Effects of habitat fragmentation on the diversity of epiphytic orchids from a montane forest of southern Mexico

Published online by Cambridge University Press:  28 November 2014

Ezequiel Hernández-Pérez*
Affiliation:
Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, Unidad de Investigación en Sistemática Vegetal y Suelo, Batalla 5 de mayo S/N Col., Ejército de Oriente, Iztapalapa, México, Distrito Federal, C. P. 09230, México
Eloy Solano
Affiliation:
Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, Unidad de Investigación en Sistemática Vegetal y Suelo, Batalla 5 de mayo S/N Col., Ejército de Oriente, Iztapalapa, México, Distrito Federal, C. P. 09230, México
*
1Corresponding author. Email: ezequiel_h_p@hotmail.com

Abstract:

Epiphytic orchids are very diverse in montane forests, but fragmentation modifies this diversity. Twenty fragments were quantified to evaluate the effects of fragmentation on the alpha and beta diversities of epiphytic orchids in a montane forest located in southern Mexico. The following factors were evaluated: area, core area, shape, edge density, Euclidean nearest-neighbour distance fragment and contrast index. In each fragment, two transects of 2 × 50 m were drawn, and the trees with a diameter at breast height ≥ 20 cm were recorded. In each tree, the orchid species present were identified and quantified. Twenty-three species of epiphytic orchid in 234 phorophytes corresponding to 20 species were recorded. The epiphytic orchid richness per tree and species turnover was different between the phorophytes. The edge density and the contrast index had significant effects on the alpha diversity, while the isolation of the fragments significantly affected the beta diversity. The edge density positively affected the alpha diversity of the epiphytic orchids, likely through microclimatic changes caused by fragmentation. Drought-tolerant species were common on the edges of the fragments, and shade-tolerant species established on the core area of the fragments. This pattern most likely depends on the ecological range of the taxa, which is crucial to their development and persistence in fragmented habitats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACEBEY, A., GRADSTEIN, S. R. & KRÖMER, T. 2003. Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. Journal of Tropical Ecology 19:918.Google Scholar
ANDERSON, M. J. 2004. CAP: a FORTRAN computer program for canonical analysis of principal coordinates. Department of Statistics, University of Auckland, New Zealand. 14 pp.Google Scholar
ANDRÉN, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportion of suitable habitat: a review. Oikos 71:340346.Google Scholar
BARKER, M. G. 1997. An update on low-tech methods for forest canopy access and on sampling a forest canopy. Selbyana 18:6171.Google Scholar
BARKER, M. G. & SUTTON, S. L. 1997. Low-tech methods for forest canopy access. Biotropica 29:243247.Google Scholar
BARTHLOTT, W., SCHMIT-NEURERBURG, V., NIEDER, J. & ENGWALD, S. 2001. Diversity and abundance of vascular epiphytes. A comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152:145156.Google Scholar
BENAVIDES, A. M., WOLF, J. H. D. & DUIVENVOORDEN, J. F. 2006. Recovery and succession of epiphytes in upper Amazonian fallows. Journal of Tropical Ecology 22:705717.Google Scholar
BENZING, D. H. 1990. Vascular epiphytes. Cambridge University Press, Cambridge. 354 pp.Google Scholar
BURNS, K. C. & DAWSON, J. 2005. Patterns in the diversity and distribution of epiphytes and vines in a New Zealand forest. Austral Ecology 30:883891.Google Scholar
CALLAWAY, R., REINHART, K., MOORE, G., MOORE, D. & PENNINGS, S. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221230.Google Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. G. B., DEN NIJS, J. C. M., SANAHUJA, O. & DURÁN-APUY, A. 2006. Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic and Applied Ecology 7:520532.Google Scholar
CASCANTE-MARÍN, A., VON MEIJENFELDT, N., DE LEEUW, H. M. H., WOLF, J. H. D., OOSTERMEIJER, J. G. B. & DEN NIJS, J. C. M. 2009. Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology 25:6373.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2001. Sample methods of vascular epiphytic plants: their effects on recording species richness and frequency. Selbyana 22:181191.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2006. Relationship between tree size and epiphyte richness: colonization, equilibrium, and extinction rates in epiphyte communities. Journal of Biogeography 33:323330.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2008. Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodiversity and Conservation 17:191207.Google Scholar
FOLEY, J. A., DEFRIES, R., ASNER, G. P., BARFORD, C., BONAN, G., CARPENTER, S. R., CHAPIN, F. S., COE, M. T., DAILY, G. C., GIBBS, H. K., HELKOWSKI, J. H., HOLLOWAY, T., HOWARD, E. A., KUCHARIK, C. J., MONFREDA, C., PATZ, J. A., PRENTICE, C., RAMANKUTTY, N. & SNYDER, P. K. 2005. Global consequences of land use. Science 309:570574.Google Scholar
GARCÍA, E., 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México. México, D. F.105 pp.Google Scholar
GAUCH, H. J. J. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge. 298 pp.Google Scholar
GRADSTEIN, S. R., NADKARNI, N. M., KRÖMER, T., HOLZ, I. & NÖSKE, N. 2003. A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forest. Selbyana 24:105111.Google Scholar
GRAHAM, M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84:28092815.Google Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Contribution of non trees to species richness of a tropical rain forest. Biotropica 19:149156.Google Scholar
HÁGSATER, E., SOTO-ARENAS, M. Á., SALAZAR-CHÁVEZ, G. A., JIMÉNEZ-MACHORRO, R., LÓPEZ-ROSAS, M. A. & DRESSLER, R. L. 2005. Las orquídeas de México. Instituto Chinoín México, D. F.304 pp.Google Scholar
HAMMER, O., HARPER, D. A. T. & RYAN, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica 4:19.Google Scholar
HIETZ, P. 2005. Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology 19:391399.Google Scholar
HIETZ, P. & HIETZ-SEIFERT, U. 1995. Structure and ecology of epiphyte communities of a cloud forest in central Veracruz, Mexico. Journal of Vegetation Science 6:719728.Google Scholar
HIETZ, P., BUCHBERGER, G. & WINKLER, M. 2006. Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 12:103112.Google Scholar
HIETZ-SEIFERT, U., HIETZ, P. & GUEVARA, S. 1996. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz. Biological Conservation 75:103111.Google Scholar
HIRATA, A., KAMIJO, T. & SAITO, S. 2009. Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest. Plant Ecology 201:247254.Google Scholar
HOLZ, I. & GRADSTEIN, R. S. 2005. Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica – species richness, community composition and ecology. Plant Ecology 178:89109.Google Scholar
HUNDERA, K., AERTS, R., BEENHOUWER, M. D., OVERTVELD, K. V., HELSEN, K., MUYS, B. & HONNAY, O. 2013. Both forest fragmentation and coffee cultivation negatively affect epiphytic orchid diversity in Ethiopian moist evergreen Afromontane forests. Biological Conservation 159:285291.Google Scholar
JÁCOME, J., GALEANO, G., AMAYA, M. & MORA, M. 2004. Vertical distribution of epiphyte and hemiepiphytic Araceae in a tropical rain forest in Chocó, Colombia. Selbyana 23:118123.Google Scholar
JACQUEMYN, H., BRYS, R., HERMY, M. & WILLEMS, J. H. 2005. Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biological Conservation 121:257263.Google Scholar
JOHANSSON, D. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59:1123.Google Scholar
KELLY, D. L. 1985. Epiphytes and climbers of a Jamaican rain forest: vertical distribution, life forms and life histories. Journal of Biogeography 12:223241.Google Scholar
KÖSTER, N., FRIEDRICH, K., NIEDER, N. & BARTHLOTT, W. 2009. Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conservation Biology 25:911919.Google Scholar
KRÖMER, T. & GRADSTEIN, S. R. 2003. Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24:190195.Google Scholar
KRÖMER, T. M., KESSLER, M., GRADSTEIN, S. R. & ACEBEY, A. 2005. Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32:17991809.Google Scholar
KRÖMER, T. M., KESSLER, M. & GRADSTEIN, S. R. 2007. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecology 189:261278.Google Scholar
LARREA, M. L. & WERNER, F. A. 2010. Response of vascular epiphyte diversity to different land use intensities in a neotropical montane wet forest. Forest Ecology and Management 260:19501955.Google Scholar
LAUBE, S. & ZOTZ, G. 2006. Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. Annals of Botany 97:11031114.Google Scholar
LAURANCE, W. F. 2007. Have we overstated the tropical biodiversity crisis? Trends in Ecology and Evolution 22:6570.Google Scholar
MALIZIA, A. 2003. Host tree preference of vascular epiphytes and climbers in a subtropical montane cloud forest of northwest Argentina. Selbyana 24:196205.Google Scholar
MEHLTRETER, K., FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2005. Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. Journal of Tropical Ecology 21:651660.Google Scholar
MIGENIS, L. E. & ACKERMAN, J. D. 1993. Orchid-sporophyte relationships in a forest watershed in Puerto Rico. Journal of Tropical Ecology 9:231240.Google Scholar
MOORHEAD, L. C., PHILPOTT, S. M. & BICHIER, P. 2010. Epiphyte biodiversity in the coffee agricultural matrix: canopy stratification and distance from forest fragments. Conservation Biology 24:737746.Google Scholar
MURREN, C. J. 2003. Spatial and demographic population genetic structure in Catasetum viridiflavum across a human-disturbed habitat. Journal of Evolutionary Biology 16:333342.Google Scholar
NIEDER, J., ENGWALD, S. & BARTHLOTT, W. 1999. Patterns of neotropical epiphyte diversity. Selbyana 20:6675.Google Scholar
NÖSKE, N. M., HILT, N., WERNER, F. A., BREHM, G., FIEDLER, K., SIPMAN, H. J. M. & GRADSTEIN, S. R. 2008. Disturbance effects on epiphytes and moths in a montane forest in Ecuador. Basic and Applied Ecology 9:412.Google Scholar
OCHOA-GAONA, S., GONZÁLEZ-ESPINOSA, M., MEAVE, J. A. & SORANI-DAL BON, V. 2004. Effect of forest fragmentation on the woody flora of the highlands of Chiapas, Mexico. Biodiversity and Conservation 13:867884.Google Scholar
OLMSTED, I. & GÓMEZ-JUÁREZ, M. 1996. Distribution and conservation of epiphytes on the Yucatán peninsula. Selbyana 17:5870.Google Scholar
OTERO, J. T., ACKERMAN, J. D. & BAYMAN, P. 2002. Diversity and host specificity of mycorrhizal fungi from tropical orchids. American Journal of Botany 89:18521858.Google Scholar
PARKER, G. G. 1995. Structure and microclimate of forest canopies. Pp. 73106 in Lowman, M. D. & Nadkarni, N. M. (eds.). Forest canopies. Academic Press, San Diego.Google Scholar
PARRA-TABLA, V., VARGAS, C. F., MAGAÑA-RUEDA, S. & NAVARRO, J. 2000. Female and male pollination success of Oncidium ascendens Lindley (Orchidaceae) in two contrasting habitat patches: Forest vs. agricultural field. Biological Conservation 94:335340.Google Scholar
SALA, O. E., CHAPIN, F. S., ARMESTO, J. J., BERLOW, E., BLOOMFIELD, J., DIRZO, R., HUBER-SANWALD, E., HUENNEKE, L. F., JACKSON, R. B., KINZIG, A., LEEMANS, R., LODGE, D. M., MOONEY, H. A., OESTERHELD, M., LEROY-POFF, N., SYKES, M. T., WALKER, B. H., WALKER, M. & WALL, D. H. 2000. Global biodiversity scenarios for the year 2100. Science 287:17701774.Google Scholar
SALAZAR-CHÁVEZ, G. A. & SOTO-ARENAS, M. A. 1996. El género Lepanthes Sw. en México. Orquídea (México, D. F.) 14:1231.Google Scholar
SANFORD, W. W. 1968. Distribution of epiphytic orchids in semideciduous tropical forest in southern Nigeria. Journal of Ecology 56:697705.Google Scholar
SNÄLL, T., PENNANEN, J., KIVISTÖ, L. & HANSKI, I. 2005. Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos 109:209222.Google Scholar
SOLIS-MONTERO, L., FLORES-PALACIOS, A. & CRUZ-ANGÓN, A. 2005. Shade coffee plantations as refuges for tropical wild orchids in Central Veracruz, Mexico. Conservation Biology 19:908916.Google Scholar
SOSA, V. & PLATAS, T. 1998. Extinction and persistence of rare orchids in Veracruz, Mexico. Conservation Biology 12:451455.Google Scholar
TER STEEGE, H. & CORNELISSEN, J. H. C. 1989. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331339.Google Scholar
TREJO, I. 2004. Clima. Pp. 6785 in García-Mendoza, A. J., Ordóñez, M. J. & Briones-Salas, M. (eds.). Biodiversidad de Oaxaca. Instituto de Biología-UNAM-Fondo Oaxaqueño para la Conservación de la Naturaleza-World Wildlife Fund, México, D. F.Google Scholar
TREMBLAY, R. L. & SALGUERO-FARÍA, J. A. 2001. The unkindest cut: the fate of Lepanthes woodburyana, a small neotropical orchid. Lindleyana 16:3842.Google Scholar
TREMBLAY, R. L., ZIMMERMAN, J. K., LEBRÓN, L., BAYMAN, P., SASTRE, I., AXELROD, F. & ALERS-GARCÍA, J. 1998. Host specificity and low reproductive success in the rare endemic Puerto Rican orchid Lepanthes caritensis. Biological Conservation 85:297304.Google Scholar
WERNER, F. A. 2011. Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut. Basic and Applied Ecology 12:172181.Google Scholar
WERNER, F. A. & GRADSTEIN, S. R. 2008. Seedling establishment of vascular epiphytes on isolated and enclosed forest trees in an Andean landscape, Ecuador. Biodiversity and Conservation 17:31953207.Google Scholar
WERNER, F. A., HOMEIER, J. & GRADSTEIN, S. R. 2005. Diversity of vascular epiphytes on isolated trees in the mountain belt of southern Ecuador. Ecotropica 11:2140.Google Scholar
WILLIAMS-LINERA, G. 1993. Vegetación de bordes de un bosque nublado en el Parque Ecológico Clavijero, Xalapa, Veracruz, México. Revista de Biología Tropical 41:443453.Google Scholar
WILLIAMS-LINERA, G., SOSA, V. & PLATAS, T. 1995. The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana 16:3640.Google Scholar
WILLIAMS-LINERA, G., MANSON, R. & ISUNZA, E. 2002. La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera y Bosques 8:7389.Google Scholar
WOLF, J. H. D. 2005. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212:376393.Google Scholar
WOODS, C. L. & DEWALT, S. J. 2013. The conservation value of secondary forests for vascular epiphytes in Central Panama. Biotropica 45:119127.Google Scholar
ZAR, J. H. 1996. Biostatistical analysis. Prentice Hall, Englewood Cliffs, NJ. 662 pp.Google Scholar
ZOTZ, G. & SCHULTZ, S. 2008. The vascular epiphytes of a lowland forest in Panama – species composition and spatial structure. Plant Ecology 195:131141.Google Scholar