Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T17:36:32.751Z Has data issue: false hasContentIssue false

An inductive scheme of power conditioning at mega-Ampere currents

Published online by Cambridge University Press:  21 September 2006

A.S. CHUVATIN
Affiliation:
Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, Palaiseau, France
V.A. KOKSHENEV
Affiliation:
High Current Electronics Institute, Tomsk, Russia
L.E. ARANCHUK
Affiliation:
Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, Palaiseau, France
D. HUET
Affiliation:
Centre d'Etudes de Gramat, Gramat, France
N.E. KURMAEV
Affiliation:
High Current Electronics Institute, Tomsk, Russia
F.I. FURSOV
Affiliation:
High Current Electronics Institute, Tomsk, Russia

Abstract

This work describes an inductive energy storage scheme intended for power multiplication at mega-Ampere currents. The key power multiplication element of the scheme is an opening switch generating the voltage of inductive origin. The switch represents an additional volume with magnetically accelerated solid-state or plasma conductor between the generator and the load. Motion of the conductor increases the inductance of the volume. A sufficiently fast increase of this inductance at the end of magnetic energy storage time ensures power multiplication. A critical requirement for the accelerated conductor is the possibility of temporal profiling of the inductance increase. A proof-of-principle experiment at GIT12 shows that such profiling is possible. We suggest a simple analysis of the scheme efficiency and illustrate this analysis for a multi-mega-Ampere class generator. The scheme is alternative to existing inductive energy storage technologies for pulsed-power conditioning at high currents.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrov, V.V., Grabovsky, E.V., Zukakishvili, G.G., Zurin, M.V., Komarov, N.N., Krasovsky, I.V., Mitrofanov, K.N., Nedoseev, S.L., Oleinik, G.M., Porofeev, I. Yu., Samokhin, A.A., Sasorov, P.V., Smirnov, V.P., Fedulov, M.V., Frolov, I.N. & Chernov, A.A. (2003). Current-induced implosion of a multiwire array as a radial plasma rainstorm. JETP 97, 745753.CrossRefGoogle Scholar
Aleksandrov, V.V., Grabovsky, E.V., Zurin, M.V., Krasovsky, I.V., Mitrofanov, K.N., Nedoseev, S.L., Oleinik, G.M., Porofeev, I.Yu., Samokhin, A.A., Sasorov, P.V., Smirnov, V.P., Fedulov, M.V. & Frolov, I.N. (2004). Characteristics of high-power radiating imploding discharge with cold start. JETP 99, 11501172.CrossRefGoogle Scholar
Chuvatin, A.S., Kim, A.A., Kokshenev, V.A., Kovalchuk, B.M., Kurmaev, N.E., Loginov, S.V. & Fursov, F.I. (1997). A composite POS: First proof-of-principle results from GIT-12. Proc. 11th IEEE International Pulsed Power Conference, pp. 261268. Baltimore: IEEE.
Chuvatin, A.S. (1999). New concept of multi-MA radiation loads in inductive energy storage systems (LL-scheme). Bull. Am. Phys. Soc. 44, 103.Google Scholar
Chuvatin, A.S., Rudakov, L.I., Kokshenev, V.A., Aranchuk, L.E., Huet, D., Gasilov, V.A., Krukovskii, A.Yu., Kurmaev, N.E. & Fursov, F.I. (2002). New IES scheme for power conditioning at ultra-high currents: from concept to MHD modelling and first experiments. Proc. 5th International Conference on Dense Z-Pinches, Vol. 651, pp. 4750. New Mexico: AIP.CrossRef
Davis, J., Giuliani_Jr., J.L., Rogerson, J. & Thornhill, J.W. (1996). Limitations on the K-shell X-ray conversion efficiency of a krypton Z-Pinch plasma. Proc. 11th International Conference on High Power Particle Beams, Vol. II, pp. 709712. Prague: Tiskarna, Ltd.
IEEETPS (1987). Special issue on Plasma Opening Switches. IEEE Trans. Plasma Sci. PS-15.
Kokshenev, V.A., Fursov, F.I. & Kurmaev, N.E. (2004). Device for generation of megaampere current pulses with a 10−7 s rise time in radiating load of the GIT 12 generator. Proc. 13th Symp. on High Current Electronics, pp. 166169. Tomsk, Russia: Institute of High Current Electronics.
Kovalchuk, B.M., Kokshenev, V.A., Kim, A.A., Kurmaev, N.E., Loginov, S.V. & Fursov, F.I. (1997). GIT16: State of project in 1995–1997. Proc. 11th IEEE International Pulsed Power Conference, pp. 715723. Baltimore: IEEE.CrossRef
Lebedev, S.V., Beg, F.N., Bland, S.N., Chittenden, J.P., Dangor, A.E., Haines, M.G., Pikuz, S.A. & Shelkovenko, T.A. (1997). Effect of core-corona plasma structure on seeding of instabilities in wire array Z pinches. Phys. Rev. Lett. 85, 98101.Google Scholar
Matzen, M.K. (1997). Z pinches as intense X-ray sources for high-energy density physics applications. Phys. Plasmas 4, 15191527.CrossRefGoogle Scholar
Mazarakis, M.G., Deeney, C.E., Douglas, M.R., Stygar, W.A., Sinars, D.B., Cuneo, M.E., Chittenden, J., Chandler, G.A., Nash, T.J., Struve, K.W., & McDaniel, D.H. (2004). Tungsten wire number dependence of the implosion dynamics at the Z-accelerator. Plasma Devices and Operations 13, 157161.Google Scholar
Megagauss. (1990). Megagauss fields and pulsed power systems (Titov, V.M. & Shvetsov, G.A., Eds.). New York: Nova Science Publishers.
Nash, T.J., Deeney, C., Chandler, G.A., Sinars, D.B., Cuneo, M.E., Waisman, E.M., Stygar, W.A., Wenger, D., Speas, S., Leeper, R.J., Seaman, J.F., McGurn, J., Torres, J., Jobe, D., Gilliland, T., Nielsen, D., Hawn, R., Seaman, H., Keller, K., Moore, T., Wagoner, T.C., LePell, P.D., Lucas, J., Schroen, D., Russell, C. & Kernaghan, M. (2004). Comparison of a copper foil to a copper wire-array Z pinch at 18 MA. Phys. Plasmas 11, L65L68.Google Scholar
Rudakov, L.I. (1999). New loads for pulse power generators. Proc. 12th IEEE International Pulsed Power Conference, pp. 11021105. Maryland: IEEE.CrossRef
Rudakov, L.I., Chuvatin, A.S., Velikovich, A. L. & Davis, J. (2003). Confinement and compression of magnetic flux by plasma shells. Phys. Plasmas 10, 44354447.CrossRefGoogle Scholar
Sinars, D.B., Cuneo, M.E., Yu, E.P., Bliss, D.E., Nash, T.J., Porter, J.L., Deeney, C., Mazarakis, M.G., Sarkisov, G.S. & Wenger, D.F. (2004). Mass-profile and instability-growth measurements for 300-wire Z-pinch implosions driven by 14–18 MA. Phys. Rev. Lett. 93, 145002.CrossRefGoogle Scholar
Spielman, R.B., Stygar, W.A., Seamen, J.F., Long, F., Ives, H., Garcia, R., Wagoner, T., Struve, K.W., Mostrom, M., Smith, I., Spence, P. & Corcoran, P. (1997). Pulsed power performance of PBFA Z. Proc. 11th IEEE International Pulsed Power Conference, pp. 709714. Baltimore: IEEE.CrossRef
Turchi, P.J., Alme, M.L., Bird, G., Boyer, C.N., Coffey, S.K., Conte, D., Davis_III, J.F. & Seiler, S.W. (1987). Review of plasma flow switch development. IEEE Trans. Plasma Sci. PS-15, 747759.CrossRefGoogle Scholar