Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T16:50:29.290Z Has data issue: false hasContentIssue false

Characterization of a bright, tunable, ultrafast Compton scattering X-ray source

Published online by Cambridge University Press:  01 July 2004

F.V. HARTEMANN
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
A.M. TREMAINE
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
S.G. ANDERSON
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
C.P.J. BARTY
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
S.M. BETTS
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
R. BOOTH
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
W.J. BROWN
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
J.K. CRANE
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
R.R. CROSS
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
D.J. GIBSON
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
D.N. FITTINGHOFF
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
J. KUBA
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
G.P. LE SAGE
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
D.R. SLAUGHTER
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
A.J. WOOTTON
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
E.P. HARTOUNI
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
P.T. SPRINGER
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
J.B. ROSENZWEIG
Affiliation:
University of California at Los Angeles, Department of Physics and Astronomy, Los Angeles, CA
A.K. KERMAN
Affiliation:
Massachusetts Institute of Technology, Physics Department, Cambridge, MA

Abstract

The Compton scattering of a terawatt-class, femtosecond laser pulse by a high-brightness, relativistic electron beam has been demonstrated as a viable approach toward compact, tunable sources of bright, femtosecond, hard X-ray flashes. The main focus of this article is a detailed description of such a novel X-ray source, namely the PLEIADES (Picosecond Laser–Electron Inter-Action for the Dynamical Evaluation of Structures) facility at Lawrence Livermore National Laboratory. PLEIADES has produced first light at 70 keV, thus enabling critical applications, such as advanced backlighting for the National Ignition Facility and in situ time-resolved studies of high-Z materials. To date, the electron beam has been focused down to σx = σy = 27 μm rms, at 57 MeV, with 266 pC of charge, a relative energy spread of 0.2%, a normalized horizontal emittance of 3.5 mm·mrad, a normalized vertical emittance of 11 mm·mrad, and a duration of 3 ps rms. The compressed laser pulse energy at focus is 480 mJ, the pulse duration 54 fs Intensity Full Width at Half-Maximum (IFWHM), and the 1/e2 radius 36 μm. Initial X rays produced by head-on collisions between the laser and electron beams at a repetition rate of 10 Hz were captured with a cooled CCD using a CsI scintillator; the peak photon energy was approximately 78 keV, and the observed angular distribution was found to agree very well with three-dimensional codes. The current X-ray dose is 3 × 106 photons per pulse, and the inferred peak brightness exceeds 1015 photons/(mm2 × mrad2 × s × 0.1% bandwidth). Spectral measurements using calibrated foils of variable thickness are consistent with theory. Measurements of the X-ray dose as a function of the delay between the laser and electron beams show a 24-ps full width at half maximum (FWHM) window, as predicted by theory, in contrast with a measured timing jitter of 1.2 ps, which contributes to the stability of the source. In addition, K-edge radiographs of a Ta foil obtained at different electron beam energies clearly demonstrate the γ2-tunability of the source and show very good agreement with the theoretical divergence-angle dependence of the X-ray spectrum. Finally, electron bunch shortening experiments using velocity compression have also been performed and durations as short as 300 fs rms have been observed using coherent transition radiation; the corresponding inferred peak X-ray flux approaches 1019 photons/s.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arthur, J., Materlik, G., Tatchyn, R. & Winick, H. (1995). Rev. Sci. Instrum. 66, 1987.
Banber, C., Boege, S.J., Koffas, T., Melissinos, A.C., Meyerhofer, D.D., Reis, D.A., Ragg, W., Bula, C., McDonald, K.T., Prebys, E.J., Burke, D.L., Field, R.C., Horton-Smith, G., Spencer, J.E., Walz, D., Berridge, S.C., Bugg, W.M., Shmakov, K. & Weidemann, A.W. (1999). Phys. Rev. D 60, 092004/143.
Barty, C.P.J., Guo, T., Le Blanc, C., Raksi, F., Rose-Petruck, C., Squier, J., Wilson, K.R., Yakovlev, V.V. & Yamakawa, K. (1996). Opt. Lett. 21, 668.
Biedron, S.G., Goeppner, G.A., Lewellen, J.W., Milton, S.V., Nassiri, A., Travish, G., Wang, X.J., Arnold, N.D., Berg, W.J., Bazbien, M., Doose, C.L., Dortwegt, R.J., Grelick, A., Galayda, J.N., Markovich, G.M., Pasky, S.J., Power, J.G. & Yang, B.X. (1999). Proc. Particle Accelerator Conference 1999, 2024.
Bula, C., McDonald, K.T., Prebys, E.J., Bamber, C., Boege, S., Kotseroglou, T., Melissinos, A.C., Meyerhofer, D.D., Ragg, W., Burke, D.L., Field, R.D., Horton-Smith, G., Odian, A.C., Spencer, J.E., Walz, D., Berridge, S.C., Bugg, W.M., Shmakov, K. & Weidemann, A.W. (1996). Phys. Rev. Lett. 76, 3116.
Burke, D.L., Field, R.C., Horton-Smith, G., Odian, A.C., Spencer, J.E., Walz, D., Berridge, S.C., Bugg, W.M., Shmakov, K., Weidemann, A.W., Bula, C., McDonald, K.T., Prebys, E.J., Bamber, C., Boege, S., Kotseroglou, T., Melissinos, A.D., Meyerhofer, D.D., Reis, D.A. & Ragg, W. (1997). Phys. Rev. Lett. 79, 1626.
Carlsten, B.E. (1989). Nucl. Instrum. Methods Phys. Res. A 285, 313319.
Cavalleri, A., Siders, C.W., Brown, F.L.H., Leitner, D.M., Toth, C., Squier, J.A., Barty, C.P.J., Wilson, K.R., Sokolowski-Tinten, K., Horn von Hoegen, M., von der Linde, D. & Kammler, M. (2000). Phys. Rev. Lett. 85, 586.
Chin, A.H., Schoenlein, R.W., Glover, T.E., Balling, P., Leemans, W.P. & Shank, C.V. (1999). Phys. Rev. Lett. 83, 336.
Dirac, P.A.M. (1938). Proc. Roy. Soc. London, Ser. A 167, 148.
Esarey, E., Ride, S.K. & Sprangle, P. (1993). Phys. Rev. E 48, 30033021.
Esarey, E., Sprangle, P. & Krall, J. (1995). Phys. Rev. E 52, 54435453.
Fitzgerald, R. (2000). Phys. Today 53, 23.
Fultz, S.C. & Whitten, C.L. (1971). IEEE Trans. Nucl. Sci. 18, 533.
Gradshteyn, I.S. & Ryzhik, I.M. (1980). Table of Integrals, Series, and Products, 4th Ed., Orlando, FL: Academic Press.
Greiner, W. & Reinhardt, J. (1994). Quantum Electrodynamics. Berlin: Springer Verlag.
Guo, T., Spielmann, Ch., Walker, B.C. & Barty, C.P.J. (2001). Rev. Sci. Inst. 72, 41.
Hartemann, F.V. (1998). Phys. Plasmas 5, 20372047.
Hartemann, F.V. (2000). Phys. Rev. E 61, 972975.
Hartemann, F.V. (2002). High Field Electrodymanics. Boca Raton, FL: CRC Press.
Hartemann, F.V., Baldis, H.A., KIerman, A.K., Le Foll, A., Luhmann, N.C., Jr. & Rupp, B. (2001). Phys. Rev. E 64, 016501.
Hartemann, F.V. & Kerman, A.K. (1996). Phys. Rev. Lett. 76, 624627.
Hartemann, F.V., Van Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C. Jr., Baldis, H.A. Gupta, A., &Kerman, A.K. (1996). Phys. Rev. E 54, 29562962.
Hartemann, F.V., Troha, A.L., Luhmann, N.C. Jr. & Toffano, Z. (1998). Phys. Rev. E 58, 5001.
Hogan, M.J., Pellegrini, C., Rosenzweig, J., Anderson, S., Frigola, P., Tremaine, A., Fortgang, C., Nguyen, D.C., Sheffield, R.L., Kinross-Wright, J., Varfolomeev, A., Varfolomeev, A.A., Tolmachev, S. & Carr, R. (1998). Phys. Rev. Lett. 81, 48674870.
Lawson, W., Bellamy, C. & Brosuis, D.F. (Eds.). (1999). Advanced Accelerator Concepts, 8th Workshop, Conference Proceedings No. 472. Woodbury, NY: American Institute of Physics.
Le Sage, G.P., Anderson, S.G., Cowan, T.E., Crane, J.K., Dimire, T. & Rosenzweig, J.B. (2001). Proc Ninth Workshop on Anvanced Accelerator Concepts Colestock, P.L. & Kelley, S., Eds.), Vol. 569, p. 391. American Institute of Physics.
Leemans, W.P., Schoenlein, R.W., Volfbeyn, P., Chin, A.H., Glover, T.E., Balling, P., Zolotorev, M., Kim, K.J., Chattopadhyay, S. & Shank, C.V. (1996). Phys. Rev. Lett. 77, 4182.
Leemans, W.P., Schoenlein, R.W., Volfbeyn, P., Chin, A.H., Glover, T.E., Balling, P., Zolotorev, M., Kim, K.J., Chattopadhyay, S. & Shank, C.V. (1997). IEEE Journal of Quantum Electronics 33, No. 11 1925, 1997.
Lindenberg, A.M., Kang, I., Johnson, S.L., Missalla, T., Heimann, P.A., Chang, Z., Larsson, J., Bucksbaum, P.H., Kapteyn, H.C., Padmore, H.A., Lee, R.W., Mark, J.S. & Falcone, R.W. (2000). Phys. Rev. Lett. 84, 111.
Litvinenko, V.N., Burnham, B., Emamian, M., Hower, N., Madey, J.M.J., Morcombe, P., O'Shea, P.G., Park, S.H., Sachtschale, R., Straub, K.D., Swift, G., Wang, P., Wu, Y., Canon, R.S., Howell, C.R., Roberson, N.R., Schreiber, E.C., Spraker, M., Tornow, W., Weller, H.R., Pinayev, I.V., Gavrilov, N.G., Fedotov, M.G., Kulinapov, G.N., Yurkin, G.Y., Mikhailov, S.F., Popik, V.M., Skrinsky, A.N., Vinokurov, N.A., Norum, B.E., Lumpkin, A. & Yang, B. (1997). Phys. Rev. Lett. 78, 4569.
Mourou, G.A., Barty, C.P.J. & Perry, M.D. (1998). Phys. Today 51, 2228.
O'Shea, P., Kimmel, M., Gu, X. & Trebino, R. (2001). Opt. Lett. 26, 932.
O'Shea, P., Kimmel, M. & Trebino, R. (2002). J. Opt. B 4, 44.
Perry, M.D. & Mourou, G. (1994). Science 264, 917924.
Reiser, M. (1994). Theory and Design of Charged Particle Beams. New York: John Wiley and Sons.
Ride, S.K., Esarey, E. & Baine, M. (1995). Phys. Rev. E 52, 54255442.
Robb, R.A. (1995). Three-dimensional Biomedical Imaging: Principles & Practice. New York: Wiley-VCH Publishers.
Roberson, C.W. & Sprangle, P. (1989). Phys. Fluids B 1, 3.
Rose-Petruck, C. et al. (1999). Nature 398, 310.
Schoenlein, R.W., Chattopadhyay, S., Chong, H.H.W., Glover, T.E., Heimann, P.A., Shank, C.V., Zholents, A.A. & Zolotorev, M.S. (2000). Science 287, 2237.
Schoenlein, R.W., Leemans, W.P., Chin, A.H., Volfbeyn, P., Glover, T.E., Balling, P., Zolotorev, M., Kim, K.-J., Chattopadhyay, S. & Shank. C.V. (1996). Science 274, 236238.
Siders, C.W., Cavalleri, A., Sokolowski-Tinten, K., Tost, C., Guo, T., Kammler, M., Horn von Hoegen, M., Wilson, K.R., von der Linde, D. & Barty, C.P. J. (1999). Science 286, 1340.
Umstadter, D.P., Barty, C., Perry, M & Mourou, G.A. (1998). Opt. Phot. News 9, 41.
Wiedemann, H. (1999). Particle Accelerator Physics, 2nd Ed., Vol. 1, New York: Springer.
Yu, D., Newsham, D., Wilson, P., Zeng, J., Rosenzweig, J., Ding, X., Hartemann, F. & Landahl, E. (1999). In: Proc. Particle Accelerator Conference 1999, 2003.
Zholents, A.A. & Zolotorev, M.S. (1996). Phys. Rev. Lett. 76, 912.