Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:16:50.503Z Has data issue: false hasContentIssue false

Development of compact nanosecond pulsed X-ray source

Published online by Cambridge University Press:  06 March 2017

M.J. Li*
Affiliation:
Institute of Nuclear Physics and Chemistry, Mianyang, China
D.Y. Chen
Affiliation:
Institute of Nuclear Physics and Chemistry, Mianyang, China
L. Zhou
Affiliation:
Institute of Nuclear Physics and Chemistry, Mianyang, China
C. Liang
Affiliation:
Institute of Nuclear Physics and Chemistry, Mianyang, China
L. Zhou
Affiliation:
China Electronics Technology Group Corporation Twelfth Institute, Beijing, China
H.B. You
Affiliation:
Institute of Nuclear Physics and Chemistry, Mianyang, China
*
*Address correspondence and reprint requests to: M.J. Li, Institute of Nuclear Physics and Chemistry, Mianyang, China. E-mail: caeplmj@126.com

Abstract

A compact nanosecond pulsed X-ray source is described. The X-ray source consists of two important subassemblies: a high-voltage pulse generator and an X-ray diode. The high-voltage pulse generator is designed based on the principle of triple resonance circuit producing a high-voltage pulse across the X-ray diode with amplitude of up to 500 kV. The X-ray diode is a sealed transmission target X-ray tube. Its cathode is comb structure formed from thin tungsten sheets with thickness 50 µm, while its target is made of 100 µm titanium film. The X-ray dose at a distance of 20 cm from the diode is 20 mR per pulse, while the diode voltage is 512 kV. In the case, the full-width at half-maximum of the X-ray pulse is ~5 ns.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bieniosek, F.M. (1990). Triple resonance pulse transformer circuit. Rev. Sci. Instrum. 61, 17171719.Google Scholar
Daniele, P., Andrei, Y.N., Herbert, O.M. & Keith, A.N. (2011). Experimental characterization of the coherence properties of hard X-ray sources. Opt. Express. 19, 80738078.Google Scholar
Dorchies, F., Harmand, M., Descamps, D., Fourment, C., Hulin, S., Petit, S., Peyrusse, O. & Santos, J.J. (2008). High-power 1 kHz laser-plasma X-ray source for ultrafast x-ray absorption near-edge spectroscopy in the keV range. Appl. Phys. Lett. 93, 121113.CrossRefGoogle Scholar
Faenov, A.Ya., Pikuz, T.A., Magnitskiy, S.A., Nagorskiy, N., Tanaka, M., Ishink, M., Nishikino, M., Kando, M., Kodama, R., Kato, Y. & Kawachi, T. (2016). X-ray coherent mirage: generation of phase – matched coherent point source in plasma media by propagated X-ray laser seeded beam. Laser Part. Beams 34, 402411.Google Scholar
Fehlau, P.E. & Brunson, G.S. (1983). Coping with plastic scintillators in nuclear safeguards. IEEE Trans. Nucl. Sci., NS-30, 158161.Google Scholar
Habibinia, D. & Feyzi, M.R. (2014). Optimal winding design of a pulse transformer considering parasitic capacitance effect to reach best rise time and overshoot. IEEE Trans. Dielectr. Electr. Insul. 21, 13501359.Google Scholar
Hong, D., Herve Rabat, A., Erwan Le Menn, B., Clement Zaepffel, C. & Bauchire, J.-M. (2016). Compact Z-pinch radiation source dedicated to broadband absorption measurements. Matter Radiat. Extremes 1, 179186.Google Scholar
Kardjilov, N., Hilger, A., Manke, I., Strobl, M., Dawson, M., Williams, S. & Banhart, J. (2011). Neutron tomography instrument CONRAD at HZB. Nucl. Instrum. Methods A651, 4752.Google Scholar
Korenev, S. & Korenev, I. (2004). Compact pulsed X-ray source. IEEE Int. Power Modulator Conf., 293295.Google Scholar
Korobkin, Y.V., Romanov, I.V., Rupasov, A.A., Shikanov, A.S., Gupta, P.D., Khan, R.A., Kumbhare, S.R., Moorti, A. & Naik, P.A. (2005). Hard X-ray emission in laser-induced vacuum discharge. Laser Part. Beams 23, 333336.CrossRefGoogle Scholar
Kostyrya, I.D. & Tarasenko, V.F. (2009). Subnanosecond pulsed X-ray source based on nanosecond discharge in air at atmospheric pressure. Tech. Phys. Lett. 35, 508510.Google Scholar
Lavrinovich, I.V., Zharova, N.V., Petin, V.K., Ratakhin, N.A., Fedushchak, V.F., Shlyakhtun, S.V. & Erfort, A.A. (2013). A compact pulsed X-ray source for high-speed radiography. Instrum. Exp. Tech. 56, 329334.Google Scholar
Li, M.J., Zhang, F.Q., Liang, C. & Xu, Z. (2015). Development of 600 kV triple resonance pulse transformer. Rev. Sci. Instrum. 86, 064707.Google Scholar
Nam, S.H., Park, S.S., Heo, H., Kim, S.C., Kim, S.H., Shin, J.W., So, J.H. & Jang, W. (2007). Design of a high voltage resonance pulser. Pulsed Power Plasma Sci. 21, 13271331.Google Scholar
Tous, J., Blazek, K., Nikl, M. & Mares, J. A. (2013). Single crystal scintillator plates used for light weight material X-ray radiography. J. Phys.: Conf. Ser. 425, 192017.Google Scholar
Uhlig, J., Wahlstrom, C.-G., Walczak, M., Sundstrom, V. & Fullagar, W. (2011). Laser generated 300 keV electron beams from water. Laser Part. Beams 29, 415424.Google Scholar
Voloshinovskii, A.S., Rodnyi, P.A. & Khudro, A.K. (1994). Parameters of X-ray luminescence of PbX 2(X = F, Cl, Br, I) crystals. Opt. Spectrosc. 76, 428431.Google Scholar
Weber, M.J., Derenzo, S.E. & Moses, W.W. (2000). Measurements of ultrafast scintillation rise times: evidence of energy transfer mechanisms. J. Luminesc. 87–89, 830832.CrossRefGoogle Scholar
Zhang, Z.B., Ouyang, X.P., Wang, L., Li, C.H. & Ma, Y.L. (2008). Time response of the ICI detector. Nucl. Tech. 31, 142146 (in chinese).Google Scholar