Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T23:04:39.707Z Has data issue: false hasContentIssue false

Electronic stopping of protons in xenon plasmas due to free and bound electrons

Published online by Cambridge University Press:  22 February 2013

Manuel D. Barriga-Carrasco*
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
David Casas
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
*
Address correspondence and reprint requests to: Manuel D. Barriga-Carrasco, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain. E-mail: manueld.barriga@uclm.es

Abstract

In this work, proton stopping due to free and bound electrons in a plasma target is analyzed. The stopping of free electrons is calculated using the dielectric formalism, well described in previous literature. In the case of bound electrons, Hartree-Fock methods and oscillator strength functions are used. Differences between both stopping, due to free and bound electrons, are shown in noble gases. Then, enhanced plasma stopping can be easily estimated from target ionization. Finally, we compare our calculations with an experiment in xenon plasmas finding a close agreement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arista, N.R. & Brandt, W. (1984). Dielectric response of quantum plasmas in thermal equilibrium. Phys. Rev. A 29, 14711480.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. & Garcia-Molina, R. (2004). Simulation of the energy spectra of original versus recombined H2+ molecular ions transmitted through thin foils. Phys. Rev. A 70, 032901/18.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. & Maynard, G. (2005). A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets. Laser Part. Beams 23, 211217.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. & Maynard, G. (2006). Plasma electron-electron collision effects in proton self-retarding and vicinage forces. Laser Part. Beams 24, 5560.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. (2007). Influence of damping on proton energy loss in plasmas of all degeneracies. Phys. Rev. E 75, 016405/17.Google Scholar
Barriga-Carrasco, M.D. (2010). Full conserving dielectric function for plasmas at any degeneracy. Laser Part. Beams 28, 307311.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. (2011). Appling full conserving dielectric function to the energy loss straggling. Laser Part. Beams 29, 8186.CrossRefGoogle Scholar
Basko, M.M. (1984). Stopping of fast ions in dense plasmas. Sov. J. Plasma Phys. 10, 689694.Google Scholar
Bell, R.J., Bish, D.R.B. & Gill, P.E. (1972). Separate subshell contributions to the stopping power of rare gases. J. Phys. B: Atom. Molec. Phys. 5, 476482.CrossRefGoogle Scholar
Bell, R.J. & Dalgarno, A. (1966). Stopping power and straggling in the rare gases. Proc. Phys. Soc., 89, 5557.CrossRefGoogle Scholar
Bransden, B.H. & Joachain, C.J. (1983). Physics of Atoms and Molecules. Reading: Logman Scientific & Technical, 320327.Google Scholar
Dalgarno, A. (1960). The stopping powers of atoms. Proc. Phys. Soc. 76, 422424.CrossRefGoogle Scholar
Dehmer, J.L., Inokuti, M. & Saxon, R.P. (1975). Systematics of moments of dipole oscillator-strength distribution for atoms of the first and second row. Phys. Rev. A. 12, 102121.CrossRefGoogle Scholar
Deutsch, C., Maynard, G., Chabot, M., Gardes, D., Della-Negra, S., Bimbot, R., Rivet, M.F., Fleurier, C., Couillaud, C., Hoffmann, D.H.H., Wahl, H., Weyrich, K., Rosmej, O.N., Tahir, N.A., Jacoby, J., Ogawa, M., Oguri, Y., Hasegawa, J., Sharkov, B., Golubev, A., Fertman, A., Fortov, V.E. & Mintsev, V. (2010). Ion stopping in dense plasma target for high energy density physics. Open Plasma Phys. J. 3, 88115.Google Scholar
Fano, U. & Cooper, J.W. (1968). Spectral distribution of atomic oscillator strengths. Rev. Mod. Phys. 40, 441507.CrossRefGoogle Scholar
Fischer, C.F. (1987). General Hartree-Fock Program. Comput. Phys. Commun. 43, 355365.CrossRefGoogle Scholar
Fischer, C.F., Brage, T. & Jönsson, P. (1997). Computational Atomic Structure. An MCHF Approach. Washington: Institute of Physics Publishing.Google Scholar
Fischer, C.F. & Tachiev, G. (2009). http://nlte.nist.gov/MCHF/.Google Scholar
Frank, A., Blazevic, A., Grande, P.L., Harres, K., Hoffmann, D.H.H., Knobloch-Mass, R., Kuznetsov, P.G., Nürnberg, F., Pelka, A., Schaumann, G., Schiwietz, G., Schökel, A., Schollmeier, M., Schumacher, D., Schütrumpf, J., Vatulin, V.V., Vinojurov, O.A. & Roth, M. (2010). Energy loss of argon in a laser-generated carbon plasma, Phys. Rev. E 81, 026401(6).Google Scholar
Garbet, X., Deutsch, C. & Maynard, G. (1987). Mean excitation energies for ions in gases and plasmas. J. Appl. Phys. 61, 907916.CrossRefGoogle Scholar
Garbet, X. & Deutsch, C. (1986). Mean excitation energies for arbitrarily stripped ions in dense and hot matter. Europhys.Lett. 2, 761766.CrossRefGoogle Scholar
Gerike, D.O. (2002). Stopping power for strong beam–plasma coupling. Laser Part. Beams 20, 471474.CrossRefGoogle Scholar
Gouedard, C. & Deutsch, C. (1978). Electron gas response at any degeneracy. J. Math. Phys. 19, 3238.CrossRefGoogle Scholar
Haken, H. & Wolf, H.C. (2005). The Physics of Atoms and Quanta. New York: Springer, 355358.CrossRefGoogle Scholar
Lindhard, J. & Scharff, M. (1953) Energy loss in matter by fast particles of low charge. K. Dan. Vidensk. Selsk. Mat.- Fys. Medd. 27, 15.Google Scholar
Lindhard, J. (1954). On the properties of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 157.Google Scholar
Maynard, G. & Deutsch, C. (1985). Born random phase approximation for ion stopping in an arbitrarily degenerate electron fluid. J. Physique 46, 11131122.CrossRefGoogle Scholar
McGuire, E.J., Peek, J.M. & Pitchford, L.C. (1982). Proton stopping power of aluminum ions. Phys. Rev. A. 26, 13181325.CrossRefGoogle Scholar
McGuire, E.J. (1983). Proton stopping power of argon, krypton and xenon. Phys. Rev. A. 28, 20962103.CrossRefGoogle Scholar
McGuire, E.J. (1991). The proton stopping power of aluminum and nickel ions. J. Appl. Phys. 70, 72137216.CrossRefGoogle Scholar
Meltzer, D.E., Sabin, J.R. & Trickey, S.B. (1990) Calculation of mean excitation energy and stopping cross section in the orbital local plasma approximation. Phys. Rev. A 41, 220232.CrossRefGoogle ScholarPubMed
Mermin, N.D. (1970). Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 23622363.CrossRefGoogle Scholar
Mintsev, V., Gryaznov, V., Kulish, M., Filimonov, A., Fortov, V., Sharkov, B., Golubev, A., Fertman, A., Turtikov, V., Vishenevskiy, A., Kozodaev, A., Hoffmann, D.H.H., Funk, U., Stoewe, S., Geisel, M., Jacoby, J., Gardes, D. & Chabot, M. (1999). Stopping power of proton beam in a weakly non-ideal xenon plasma. Contrib. Plasma Phys. 39, 4548.CrossRefGoogle Scholar
Selchow, A. & Morawetz, K. (1999). Dielectric properties of interacting storage ring plasmas. Phys. Rev. B 59, 10151023.CrossRefGoogle Scholar