Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T03:02:44.506Z Has data issue: false hasContentIssue false

Nonequilibrium emission from laser-generated target plasma

Published online by Cambridge University Press:  09 March 2009

B. N. Bazylev
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR
G. A. Vergunova
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR
S. I. Kaskova
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR
G. S. Romanov
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR
V. B. Rozanov
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR
L. K. Stanchits
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR
K. L. Stepanov
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR
A. V. Teterev
Affiliation:
Scientific-Research Institute of Applied Physical Problems, ul.Kurchatova 7, 220106 Minsk, USSR and P. N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky pr. 53, 117924 Moscow, USSR

Abstract

Radiation characteristics of laser targets are studied in the soft X-ray region where photorecombination, bremsstrahlung and transitions in the discrete spectrum are the basic mechanisms of spectrum formation. The impact-radiational model is employed to describe the states of the laser target plasma. Characteristics obtained from the solution of the kinetic problem are used to compute absorption and emission coefficients. To set the time scale for a given field of gas-dynamic parameters, the transfer equation is solved and detailed information is obtained on the spectral composition of the outgoing radiation and its temporal evolution. Effective emission temperatures and radiation losses are determined. Integral radiation parameters are compared which have been derived from the solution of the transfer equation employing a volume luminescence approximation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazylev, B. N. et al. 1986 Preprint, FIAN SSSR, N60.Google Scholar
Bazylev, B. N. et al. 1986a Kvantovaya elektronika, 13, N10, 19811991.Google Scholar
Biberman, L. M., Vorob'ev, V. S. & Yakubov, I. T. 1982 Kinetics of non-equilibrium low-temperature plasma. Moscow, Nauka, 375 p.Google Scholar
Derzhiev, V. I., Zhidkov, A. G. & Yakovlenko, S. I. 1986 Ion radiation in nonequilibrium dense plasma. Moscow, Energoatomizdat, 159 p.Google Scholar
Gryaznov, V. N. et al. 1980 Thermophysical properties of working media of the gas-phase nuclear reactor. Moscow, Atomizdat, 302 p.Google Scholar
Gurevich, A. V. & Pitayevsky, L. P. 1964 Zh. eksper.i teor.fiz., 46, 1281.Google Scholar
Kalitkin, N. N. & Kuzmina, L. V. 1976 A quantum-statistical equation of the state of element mixture. VINITI, dep. No. 1128.Google Scholar
Karpov, B. Ya., Fadeyev, A. P. & Shpatakovskaya, G. V. 1982 Preprint, Institute of Applied Mathematics, USSR Academy of Sciences, N147.Google Scholar
Kologrivov, A. A., Maksimchuk, A. M. & Mikhailov, Yu. A. 1985 Preprint, FIAN SSSR, N256.Google Scholar
Leontovich, M. A. & Kadomtseva, B. B. (eds.) 1982 Questions of plasma theory. Collection of Paper. Issue 12. Moscow. Energoizdat, 272 p.Google Scholar
McWhirter, R. W. P. & Hearn, A. G. 1963 Proc. Phys. Soc. 82, 641.CrossRefGoogle Scholar
Moore, C. 1943 Atomic Energy Levels. W.:NBS, 1, 309 p.Google Scholar
Romanov, G. S., Stanchits, L. K. & Stepanov, K. L., 1986 Zh. Prikl. Spektros., 44, 517.Google Scholar
Romanov, G. S., Stanchits, L. K. & Stepanov, K. L. 1986a Zh. Prikl. Spektrosk., 43, 860.Google Scholar
Romanov, G. S., Stepanov, K. L., Stanchits, L. K. 1987 Plasma physics (in press).Google Scholar
Skobelev, I. Yu., Khakhalin, S. L. & Yakovlenko, S. I. 1985 Preprint, IOFAN SSSR, N33.Google Scholar
Stepanov, K. L. et al. 1985 Dokl. Acad. Nauk, BSSR, 29, N12, 10941097.Google Scholar
Vainshtein, L. A., Sobelman, I. I. & Yukov, E. A. 1979 Atomic excitation and spectral line broadening. Moscow, Nauka, 319 p.Google Scholar
Wiese, W. L., Smith, M. W. & Miles, B. M. 1969 Atomic Transition Probabilities. W.:NSRDS-NBS, 2, 268 p.Google Scholar
Yuchi, T. & Nishibara, K. 1982 Kakayugo kanku, 48, (No. 4) 51.Google Scholar