Published online by Cambridge University Press: 09 March 2009
Radiation characteristics of laser targets are studied in the soft X-ray region where photorecombination, bremsstrahlung and transitions in the discrete spectrum are the basic mechanisms of spectrum formation. The impact-radiational model is employed to describe the states of the laser target plasma. Characteristics obtained from the solution of the kinetic problem are used to compute absorption and emission coefficients. To set the time scale for a given field of gas-dynamic parameters, the transfer equation is solved and detailed information is obtained on the spectral composition of the outgoing radiation and its temporal evolution. Effective emission temperatures and radiation losses are determined. Integral radiation parameters are compared which have been derived from the solution of the transfer equation employing a volume luminescence approximation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.