Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T22:53:23.071Z Has data issue: false hasContentIssue false

On generation of collimated high-power gamma beams

Published online by Cambridge University Press:  06 March 2006

W.T. CHYLA
Affiliation:
Applied Science Enterprise, Warszawa, Poland

Abstract

We consider spontaneous thermalization of free photon field (in a vacuum) due to self-interaction, mediated by the virtual ee+ field at ultra-high concentrations of the electromagnetic energy. That nonlinear, attractive, short-range interaction between photons triggers spontaneous evolution of the initial, low-frequency spectrum toward the maximum-entropy spectral distribution peaking in the gamma range of frequencies. Collimation and the total power of the photon beam (pulse) are hardly affected by the process of spontaneous thermalization. We estimate the threshold intensity that triggers spectral evolution of the photon field, the necessary power of the laser beam, the minimum size of the interaction region, parameters of the fully thermalized photon field, and discuss the near-threshold behavior of the electromagnetic field. Possible applications of thermalized photon beams are suggested, for example, they can serve as the pump field to attain gamma-lasing or facilitate ignition in the fusion pellet.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, D. (2003). Plasma formation through field ionization in intense laser-matter interaction. Laser Part. Beams 21, 489495.Google Scholar
Bernard, D., Moulin, F., Amiranoff, F., Braun, A., Chambaret, J.P., Darpentigny, G., Grillon, G., Ranc, S. & Perrone, F. (2000). Search for stimulated photon-photon scattering in vacuum. Eur. Phys. J. D10, 141145.Google Scholar
Brabec, T. & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545591.Google Scholar
Chyla, W.T. (1992). The hyperbolic potential of the heavy-quark interaction. Il Nuovo Cimento A105, 619623.Google Scholar
Chyla, W.T. (2000). III. Geometrical optics of variable-frequency light rays in the general relativistic regime: Combined gravitational and refractive lensing. Canadian J. Phys. 78, 755767.Google Scholar
Diels, J.C. & Rudolph, W. (1996). Ultrashort Laser Pulse Phenomena. New York: Academic Press.
Duarte, F.J. (2003). Tunable Laser Optics. Amsterdam: Elsevier Academic Press.
Edwards, C.B., Allott, R.M., Collier J.L., Danson, C.N., Hutchinson, M.H.R., Neely, D., &Wyborn, B.E. (2001). Vulcan upgrade: a petawatt laser facility for experiments at 1021 Wcm−2. Proc. SPIE–Int. Soc. Opt. Eng. 4424, 6369.Google Scholar
Eichler, J. & Meyerhof, W.E. (1995). Relativistic Atomic Collisions. New York: Academic Press.
Foldes, I.B., Kocsis, G., Racz, E., Szatmari, S. & Veres, G. (2003). Generation of high harmonics in laser plasmas. Laser Part. Beams 21, 517521.Google Scholar
Fried, H.M. (2002). Pair production via crossed lasers. Laser Part. Beams 20, 233236.Google Scholar
Karplus, R. & Neuman, M. (1950). Non-linear interactions between electromagnetic fields. Phys. Rev. 80, 380385.Google Scholar
Karplus, R. & Neuman, M. (1951). The scattering of light by light. Phys. Rev. 83, 776784.Google Scholar
Kogut, J.B. & Stepanov, M.A. (2004). The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments. Cambridge: Cambridge University Press.
Krushelnick, K., Clark, E., Najmudin, Z., Salvati, M., Santala, M.I.K., Tatarakis, M., Dangor, A.E., Malka, V., Neely, D., Allott, R. & Danson, C. (2000). Diagnosis of peak laser intensity from high-energy ion measurements during intense laser interactions with underdense plasmas. Laser Part. Beams 18, 595600.Google Scholar
Landsberg, P.T. (1961). Thermodynamics with Quantum Statistical Illustrations. New York: Interscience Publishers.
Letessier, J. & Rafelski, J. (2002). Hadrons and Quark-Gluon Plasma. Cambridge: Cambridge University Press.
Matsko, A.B., Kocharovskaya, O., Rostovtsev, Y., Welch, G.R., Zibrov, A.S. & Scully, M.O. (2001). Slow, ultraslow, stored and frozen light. In Advances in Atomic, Molecular, and Optical Physics (Bederson, B. & Walther H., Eds.), Vol. 46, pp. 191242. New York: Academic Press.
Moses, E.I. (2002). The National Ignition Facility: status and plans for laser fusion and high-energy-density experimental studies. In Proc. of the 19th IEEE/IPSS Symposium on Fusion Engineering. Atlantic City, New Jersey, pp. 487492.
Mourou, G.A., Barty, C.P.J. & Perry, M.D. (1998). Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Phys. Today 51, 2228.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems and prospectives. Laser Part. Beams 22, 512.Google Scholar
Ohanian, H.C. (1976). Gravitation and Spacetime. New York: Norton.
Pain, J.C. & Blenski, T. (2002). New approach to dense plasma thermodynamics in the super configuration approximation. Laser Part. Beams 20, 211216.Google Scholar
Pennington, D.M., Brown, C.G., Kartz, M.W., Landon, M., Perry, M.D. & Tietbohl, G.L. (1999). Production of high-intensity laser pulses with adaptive optic wave-front correction. Proc. SPIE–Int. Soc. Opt. Eng. 3749, 2021.Google Scholar
Pennington, D.M., Perry, M.D., Stuart, B.C., Boyd, R.D., Britten, J.A., Brown, C.G., Herman, S.M., Miller, J.L., Nguyen, H.T., Shore, B.W., Tietbohl, G.L. & Yanovsky, V. (1997). Petawatt laser system. Proc. SPIE–Int. Soc. Opt. Eng. 3047, 490500.Google Scholar
Perry, M.D., Pennington, D.M., Stuart, B.C., Boyd, R., Britten, J.A., Brown, C.G., Herman, S., Miller, J.L., Nguyen, H., Shore, B., Tietbohl, G.L. & Yanovsky, V. (1997). Design and performance of the petawatt laser system. Post-conference edition: Applications of High Field and Short Wavelength Sources VII. Santa Fe, New Mexico. OSA Technical Digest Series 7, 264266.Google Scholar
Protopapas, M., Keitel, C.H. & Knight, P.L. (1997). Atomic physics with super-high intensity lasers. Rep. Progr. Phys. 60, 389486.Google Scholar
Sakurai, J.J. (1984). Advanced Quantum Mechanics, 10th edition. Menlo Park, CA: Benjamin-Cummings Publishing Co.
Tahir, N.A., Shutov, A., Varentsov, D., Hoffmann, D.H.H., Spiller, P., Lomonosov, I., Wieser, J., Jacoby, J. & Fortov, V.E. (2002). High-energy-density matter research at GSI Darmstadt using intense heavy ion beams. Laser Part. Beams 20, 393397.Google Scholar
Tajima, T. & Mourou, G. (2002, March). Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. Spec. Top. Accel. Beams 5 (3).Google Scholar
Tallents, G.J., Abou-Ali, Y., Edwards, M., King, R., Pert, G.J., Pestehe, S.J., Strati, F., Lewis, C.L.S., Keenan, R., Topping, S., Klisnick, A., Guilbaud, O., Ros, D., Clarke, R., Notley, M. & Neely, D. (2002). A review of X-ray laser development at Rutherford Appleton Laboratory. Laser Part. Beams 20, 201209.Google Scholar