Published online by Cambridge University Press: 07 March 2001
At the installation SOM, the experimental study of the impulse acceleration influence on the behavior of the turbulized layer obtained as a result of Rayleigh–Taylor instability (RTI) action on the system of two different density liquids with the density ratio n = 3, has been performed. After application of impulse acceleration the systems were moving according to inertia, and by using the light method the coordinates of penetration of the heavier liquid into the lighter one and vice versa were determined. The liquids studied were placed inside the ampoule that had internal working sizes (54 × 64 × 120) mm3. There were initial accidental perturbations like a rough solid surface at the interface and the width of the initial perturbation zone was L0 = 2.3 mm. The moving ampoule blow against metal plates created the impulse acceleration. The relative impulse acceleration was δg/g11 = 22.2–66.6 where g11 is the ampoule acceleration before the impact, the impulse duration was varied from 0.27 ms to 0.096 ms. The results concerned with the turbulized layer extension after the impulse acceleration action were obtained.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.